Brain Tumor Detection Using Magnetic Resonance Images Through Convolutional Neural Networks
PDF

Cómo citar

Calderón Uribe, U., Calderón Uribe, S., González Villagómez, J., & González Villagómez, E. (2024). Brain Tumor Detection Using Magnetic Resonance Images Through Convolutional Neural Networks. JÓVENES EN LA CIENCIA, 25, 1–6. Recuperado a partir de https://www.jovenesenlaciencia.ugto.mx/index.php/jovenesenlaciencia/article/view/4216

Resumen

Nowadays, brain tumor classification is a crucial task for neurologists and radiologists. However, manually detecting brain tumors from magnetic resonance imaging (MRI) can be challenging and prone to errors. This study proposes a method using neural networks to detect brain tumors. This study uses a subset of the BRATS 2018 dataset that contains 1,992 brain MRI scans. The proposed model achieves an accuracy of 97% in the test set making it a tool for medical experts.

PDF
Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.