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Resumen 
Las radiografías panorámicas dentales son una herramienta clave en el diagnóstico odontológico, sin 
embargo, su interpretación puede verse afectada por factores como la superposición anatómica y la 
variabilidad entre pacientes. Por ello, el desarrollo de algoritmos de segmentación automatizada representa 
una alternativa prometedora para apoyar el análisis clínico. El presente trabajo describe el desarrollo de un 
algoritmo en lenguaje Python de segmentación orientado a la detección automática de espacios interdentales 
en radiografías panorámicas dentales. Se realizaron cuatro versiones del algoritmo, utilizando un enfoque de 
bajo nivel y con uso mínimo de bibliotecas externas, lo cual permitió controlar cada etapa del procesamiento. 
Los códigos resultantes fueron probados sobre una radiografía representativa, mostrando resultados 
consistentes y precisos en la detección de diastemas. Este trabajo representa un avance en herramientas 
más accesibles de apoyo clínico y una base para futuros sistemas automatizados en diagnóstico 
odontológico. 

Palabras clave: segmentación de imágenes médicas; radiografías panorámicas dentales; procesamiento 
digital de imágenes; espacios interdentales. 

Introducción 

La odontología es una rama de la medicina que estudia la anatomía, el desarrollo y las enfermedades de 
los dientes, lo que la convierte en un importante campo de investigación. Existen múltiples problemas 
dentales cuya detección temprana es crucial para prevenir complicaciones y conservar la calidad de vida del 
paciente. Una de las técnicas de imagen médica más utilizadas en el diagnóstico es la radiografía dental [1]. 

La radiografía consiste en el registro fotográfico de una imagen producida por el paso de una fuente de 
rayos X a través de un objeto. En odontología, esta herramienta se usa para evaluar el estado de los dientes, 
las encías, los maxilares y la estructura ósea de la boca. Con esta información es posible detectar las causas 
en etapas tempranas y proponer tratamientos óptimos para los pacientes. Otra aplicación de las radiografías 
dentales es en la odontología forense, la cual pretende identificar a los individuos basándose en sus 
características dentales [2]. Sin embargo, la calidad de la imagen radiográfica puede verse afectada por 
diversos factores como el dispositivo utilizado, la técnica de adquisición y su posterior procesamiento. Una 
de las limitaciones de este tipo de imágenes es que es una representación bidimensional de un objeto 
tridimensional, por lo que existe una superposición de las estructuras anatómicas. A este problema se le 
suman otras dificultades como las variaciones anatómicas entre pacientes, artefactos utilizados para 
restauraciones y prótesis, espacio existente por un diente ausente, entre otros [2,3]. Todo esto hace que el 
desarrollo de herramientas informáticas automatizadas de ayuda al diagnóstico odontológico sea un desafío 
en la actualidad. 
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Ante esta situación, el procesamiento digital de las radiografías mediante técnicas de segmentación 
automatizada puede ser una solución prometedora. La segmentación es un proceso en el que se divide una 
imagen en regiones u objetos para simplificar y facilitar su análisis. Cuando se realiza de manera robusta 
permite identificar de forma clara las distintas estructuras presentes en la imagen, lo que contribuye 
significativamente a resolver los problemas derivados de la baja calidad, la superposición de elementos o la 
variabilidad anatómica entre pacientes [4]. Diferentes métodos de segmentación han sido utilizados para 
abordar distintos problemas dentro del área odontológica con múltiples beneficios para el profesional de la 
salud y el paciente. Existen casos en los que el diagnóstico asistido por computadora se ha empleado de 
manera eficiente; por ejemplo, un estudio se centró en la detección automática de fracturas mandibulares 
mediante análisis de textura, con el objetivo de identificar posibles casos de osteoporosis y otras anomalías 
en la mandíbula [5]. En otro trabajo, se propuso un método de segmentación basado en franjas verticales, 
diseñado para aislar de forma automática la mandíbula inferior y el hueso mandibular en radiografías 
panorámicas digitales [6]. 

Por lo que, la presente investigación tiene como objetivo desarrollar un algoritmo de segmentación para la 
detección de espacios interdentales en radiografías panorámicas dentales en colaboración con el Centro de 
Investigaciones en Óptica (CIO), como un primer avance hacia algoritmos más específicos. 

Definiciones Matemáticas 

Operaciones morfológicas 

Reducción de resolución 
La interpolación bilineal es un método de reducción de imágenes que estima nuevos valores mediante el 
promedio ponderado de los niveles de gris de cuatro píxeles vecinos, aplicando una función bilineal en las 
coordenadas. Esta estimación permite generar una imagen reducida 𝑔(𝑛1,	 𝑛2)	con menor resolución según 
un factor de reducción predefinido [7,8] mediante el cálculo de: 

 
𝑔(𝑛1,	 𝑛2)	 =	 𝐴	 +	𝐴	 𝑛	 +	 𝐴	 𝑛	 +	𝐴	 𝑛	 𝑛	 	 (1) 

0													1	 1																	2	 2													3	 1	 2	

 

Si se aplica un factor r, la nueva imagen tiene tamaño 𝑀/𝑟	+	 𝑁/𝑟. Reducir la resolución de la imagen permite 
trabajar con menos datos y acelera el procesamiento, priorizando eficiencia sobre detalle. [4] 

 
Escala de grises 
Si una imagen RGB se representa como una función: 

 
𝐼	(𝑥,	𝑦)	 =	[𝑅(𝑥,	𝑦),	 𝐺(𝑥,	𝑦),	 𝐵(𝑥,	𝑦)]	, (2) 
𝑅𝐺𝐵	

 

La conversión a escala de grises se define como la combinación lineal ponderada de los canales rojo, verde 
y azul: 

𝐼	 (𝑥,	𝑦)	 =.	2989	 *	 𝑅(𝑥,	𝑦)	 +.	5870	 *	 𝐺(𝑥,	𝑦)	 +.	1140	 *	 𝐵(𝑥,	𝑦)	. (3) [9][10] 
𝑔𝑟	

 
Binarizado 
Esta operación crea una imagen binaria B(i, j) a partir de una imagen de grises I(i, j). Esto se realiza 
estableciendo un umbral fijo U y partir de una función que asigna a cada píxel de la imagen sólo dos valores 
posibles. [11] 
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   (3) 
	

Erosión 
La erosión reduce el área al eliminar o desgastar los píxeles en los bordes del objeto. Es decir, el conjunto 
de todos los puntos z, tales que el elemento estructurante B, trasladado por z, queda completamente 
contenido dentro de A. [12] Puede representarse como: 

𝐴	⊖	𝐵	=	 {𝑧|𝐵	 ⊆	 𝐴}	, (4) 
𝑧	

La dilatación expande los objetos en una imagen binaria, agregando píxeles a los bordes, se define 
formalmente como [4]: 

𝐴⊕𝐵 = {𝑧∣(𝐵̂)
𝑧
∩𝐴≠∅}, (5) 

Es decir, la dilatación de un conjunto X es el conjunto de puntos donde el elemento estructurante B, al 
reflejarse y desplazarse, toca a X [13]; su efecto depende de la forma y tamaño de B, elegidos según los 
detalles que se deseen modificar. [14] 

Centroides 

El centroide (𝑥	 ,	𝑦	)	de una región se define como: 
𝑐	 	 𝑐 

𝑥	 	 =	 1	∑∑	𝑥	 ·	 𝐵(𝑥,	𝑦)	,	 𝑦	 =	 1	∑∑	𝑦	 ·	 𝐵(𝑥,	𝑦)	, (6) 
𝑐	 𝐴		x		y	 	 𝑐	 𝐴		x		y 

donde A es el área (número de píxeles que forman la región y B se define cómo: [13] [15] 

 (7) 

Región intramaxilar 

La región intramaxilar suele hacer referencia a el área cerrada y delimitada por la disposición de los dientes, 
donde no se observan estructuras óseas dentales, y que puede analizarse para buscar anomalías, simetrías 
o segmentaciones dentro de radiografías panorámicas o intraorales.[16] Se caracteriza por que es más 
oscura que el resto de la imágen y se ubica entre el 40% y el 60% de la altura de las panorámicas 
dentales.[17] 

Simetrización 

La simetrización de una región 2	 (conjunto de píxeles en una imagen binaria) consiste en modificarla para 
que sea simétrica respecto a un eje dado, generando una nueva región 𝑅𝑠 . La simetría por reflexión 
respecto a una línea vertical 

𝑥	 =	 𝑐	se define como: (𝑥,	𝑦)	 ∈	 𝑅	 ⇒	 (2𝑐	 −	 𝑥,	𝑦)	 ∈	𝑅𝑠 , (8) para después pasar a la simetrización total de 

una región 𝑅	que se define: 𝑅𝑠	 =	 𝑅⋃	𝑅𝑒𝑓𝑙𝑒𝑥𝑖ó𝑛	 (
𝑅
𝑐), (9). Es decir, se construye la imagen reflejada de R 

respecto al eje vertical 𝑥	 =	 𝑐	y se combina con la región original. [18] 

Línea Central 

La línea central de la región intramaxilar, se obtiene calculando el píxel central de cada columna de píxeles 
que se encuentra en dicha región. Este conjunto de datos se usan como apoyo para el ajuste de la spline. 
[17] 
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Spline 

Se refiere a una regresión polinómica utilizada para suavizar los datos de la línea central obtenida de la región 
intramaxilar, utilizando cierto número de puntos equidistantes y dando como resultado un polinomio de la 
forma [19]: 

 

𝑃	(𝑥)
𝑚 	=	

0
𝑎	x
0
+	

1
𝑎	𝑥
1
+	

2
𝑎	𝑥
2
+	 	 ···	 	 +

𝑚
𝑎	𝑥		
𝑚

. (10) 

 
División de la spline 
Se refiere a la acción de segmentar el polinomio ajustado (spline) en intervalos definidos por puntos 
equidistantes, lo que permite analizar o aplicar el suavizado de manera localizada y controlada sobre la línea 
central intramaxilar. 

Espacios interdentales 

Los espacios interdentales son áreas situadas entre dientes adyacentes que, en imágenes radiográficas, se 
manifiestan como regiones de baja densidad o intensidad. Su presencia, ausencia o alteración puede indicar 
condiciones normales, patologías, o requerimientos ortodónticos. Representan regiones clave para la 
segmentación y el análisis automatizado en radiografías dentales. Al ser detectados, permite mejorar la 
delimitación de piezas dentales, identificar diastemas, evaluar la alineación dental y apoyar el diagnóstico 
clínico con herramientas computacionales. [20] 

 

Complemento 
La imagen complemento es aquella que se obtiene al invertir los valores de intensidad de cada píxel 
de una imagen. 

Matemáticamente, si una imagen original se representa como 𝐼(𝑥,	𝑦), su complemento se define como: 
𝐼

𝑐𝑜𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑜	 (𝑥,	𝑦)	 =	 255	 −	 𝐼(𝑥,	𝑦)	 , (11). Se utiliza frecuentemente para facilitar la segmentación, 
resaltar objetos oscuros sobre fondo claro o viceversa, y en operaciones morfológicas como la identificación 
de componentes conectados o la detección de bordes. [4] 

 
Operadores de Sobel 
Los operadores de Sobel tienen la tarea de suavizar la imagen de tal manera que se elimina un poco de 
ruido de la imagen si es que lo tiene, por lo consiguiente se puede desaparecer falsos bordes. [21] Se 
representan como dos matrices de 3x3, las cuáles se definen como: 

 

    (12) 

Permiten aproximar las derivadas parciales de una imagen arbitraria y, a partir de dichos valores, se 
puede calcular la magnitud del gradiente, y así extraer el contorno de los objetos en una imagen. [18] usando 
la ecuación: 

	

||⛛𝐼(𝑥,	𝑦)||=		 	 	 	 (13) 

 
  

𝐼 +	𝐼	
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Metodología 
El algoritmo completo consta de ocho pasos, mismos que se anudan uno a uno para obtener como resultado 
final la identificación de los espacios interdentales en las radiografías panorámicas dentales: 

Se desarrollaron cuatro versiones diferentes del algoritmo completo, cada uno con distinta lógica de 
programación y diferentes herramientas utilizadas. Pese a que los cuatro siguen los mismos pasos para llegar 
a un objetivo final común, puede que tanto sus tiempos como sus salidas no sean las mismas para cada paso, 
es por eso que en el desglose se muestra la ejecución y lógica de cada uno, así como la teoría detrás de 
cada paso y el tiempo de procesamiento del código completo. Cada código se probó en una muestra de 5 a 
10 imágenes obtenidas de una serie de pacientes de la Clínica de Odontología de La Salle Bajío en la ciudad 
de León, Guanajuato, México, gracias a la colaboración de la Dra. Miriam Rocha de la Facultad de 
Odontología de la Universidad de la Salle Bajío. La imagen con la que se obtendrán la comparativa en los 
códigos se muestra en la figura 2. Asimismo, el código fué desarrollado en el lenguaje de programación 
python, con un uso de mínimo a nulo de librerías especializadas. 

Figura 1. Algoritmo general. 

 
Figura 2. Radiografía base. 

Resultados y Discusiones 
A continuación se desarrollará y explicará cada una de las lógicas de programación que se siguieron para 
completar los objetivos de cada paso del algoritmo general: 

Operaciones morfológicas 

Reducción de resolución de la imagen 
De acuerdo con la definición reducción de resolución se desarrollan cuatro diferentes lógicas de programación 
que se explican a continuación: 
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Algoritmo a (Fig 3.a). La imagen original tiene una resolución de 1202 x 645 píxeles pasa a 300 x 161 
píxeles, lo que significa que tuvo un factor de reducción de 4. Esto para evitar la reescalación de la imagen y 
optimizar el procesamiento del programa, manteniendo una resolución aceptable, sin perder información 
necesaria para las siguientes etapas. 

Algoritmo b (Fig 3.b). En este algoritmo se determinó un factor de reducción de 16, con el fin de comparar 
la velocidad de los primeros pasos si se tiene una imagen de baja resolución al inicio, para luego ser 
reescalada más adelante. 

Algoritmo c (Fig 3.c). Para este código se utilizó un factor de reducción de 4, con la finalidad de facilitar el 
procesamiento de la imagen y reducir el tiempo de las operaciones posteriores, al final de las cuales, la imagen 
se restablecerá a su resolución original. La resolución original era de 1935 x 1024 píxeles y se redujo a 484 
x 256 píxeles. 

Algoritmo d (Fig 3.d). La redimensión de imágenes se logra al dividir la imagen en bloques (definidos por un 
factor de reducción, por ejemplo, 2x2 píxeles), promediar los valores de píxel en cada bloque, y usar esos 
promedios para crear una nueva imagen de menor resolución. Finalmente, se comparan la imagen original y 
la reducida. 

 

a )     b)    c)    d)  
Figura 3. Algoritmos para reducción. 

 

Escala de grises y su histograma 
De acuerdo con la definición escala de grises se desarrollan cuatro diferentes lógicas de programación que 
se explican a continuación: 

Algoritmo a (Fig 4.a). Se localiza la intensidad umbral del 40% de la suma acumulada, en este caso, el 
umbral es de 86. 

Algoritmo b (Fig 4.b). Se calculó el histograma simultáneamente durante este proceso para optimizar 
recursos. Esto permite simplificar los procesos posteriores y analizar la distribución de tonos de gris antes de 
la binarización, clave para determinar umbrales adaptativos más adelante. El umbral resultante fue de 86. 

Algoritmo c (Fig 4.c). A partir de este algoritmo, se cambió la información de los píxeles de la imagen RGB 
a la escala de grises con valores de 0 a 255. Además, se generó un histograma con estos datos, para 
determinar el umbral al que se realizará la operación de binarización (debajo del cual están el 45% de los 
píxeles totales de la imagen). 

Algoritmo d (Fig 4.d). Se construye una función de transformación acumulativa a partir de estas 
probabilidades normalizadas. Esta función redistribuye los niveles de gris, actuando como la base de la 
ecualización. Finalmente, cada píxel de la imagen original es reemplazado por su nuevo valor transformado 
usando esta función. El resultado es una nueva imagen con un contraste mejorado. 
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a )    b)   c)   d)  
Figura 4. Algoritmos para convertir una imagen RGB a escala de grises.  

 

Binarizado e histograma 
De acuerdo con la definición binarizado se desarrollan cuatro diferentes lógicas de programación que se 
explican a continuación: 

Algoritmo a (Fig 5.a). Cuálquier pixel con intensidad mayor a 86 se coloca en blanco y los pixeles menores 
o iguales a 86 se colocan en negro, generando la binarización de la imagen. Luego, a modo de comprobación, 
se calcula un histograma binario que muestra la cantidad de píxeles blancos y negros, obteniendo el 40.96% 
de pixeles en negro y el 59.04% de pixeles en blanco, lo que significa un error porcentual del 2.4% 

Algoritmo b (Fig 5.b). El binarizado no usa un umbral fijo, sino dinámico según el porcentaje de área deseada. 
Esto garantiza adaptabilidad a variaciones de iluminación. El histograma binario de 2 niveles (0/255) sirvió 
como control de calidad, comparando la cantidad de píxeles 0 (3029) y 255 (4651), verificando que la 
segmentación mantuviera la proporción esperada entre objeto y fondo. 

Algoritmo c (Fig 5.c). A partir de este código, se cambiaron los valores de los pixeles a blanco y negro, de 
modo que el 45% de los píxeles se encontraran en 0 (negro) y poder identificar mejor las regiones de la 
imagen. 

Algoritmo d (Fig 5.d). Se convierte la imagen a escala de grises, se calcula el histograma de intensidades y 
se determina un umbral automático (30% de píxeles más oscuros). Este umbral se usa para binarizar la 
imagen a blanco y negro, y finalmente, se visualizan la imagen binarizada y su histograma B/N. 

a)   b)   c)   d) 
Figura 5. Algoritmos para binarizar una imagen. 

 
Erosión 
De acuerdo con la definición erosión se desarrollan cuatro diferentes lógicas de programación que se explican 
a continuación: 

Algoritmo a (Fig 6.a). Se examina el elemento estructurante de cada píxel, y se asigna el valor mínimo de 
ese vecindario al píxel en la imagen de salida, por lo que, se toma una ventana rectangular de 3×7 píxeles, 
centrada en cada píxel de la imagen. 
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Algoritmo b (Fig 6.b). Se contempló un kernel personalizable de 3x11. Se utilizó la idea de un píxel como 
blanco solo si todos los píxeles bajo el kernel son blancos, eliminando así ruido y pequeñas desconexiones 
en las regiones de interés. 

Algoritmo c (Fig 6.c). La erosión reduce las regiones blancas en la imagen binaria. Se utilizó un elemento 
estructurante de 3×6 píxeles blancos que recorre la imagen y conserva sólo los píxeles donde todos los 
valores del entorno coinciden. Esto adelgaza los bordes y elimina detalles pequeños en la radiografía dental. 

Algoritmo d (Fig 6.d). La erosión es una operación que reduce el tamaño de las áreas blancas en una imagen 
binaria. Funciona deslizando un pequeño patrón (llamado elemento estructurante) sobre la imagen. Un punto 
en la imagen resultante será blanco sólo si todos los píxeles cubiertos por ese patrón, al estar centrado en 
dicho punto, eran blancos en la imagen original. 
 

a)    b)   c)   d)  
Figura 6. Algoritmos para erosionar una imagen binaria. 

 
Dilatación 
De acuerdo con la definición dilatación se desarrollan cuatro diferentes lógicas de programación que se 
explican a continuación: 

 

a)   b)   c)   d) 
Figura 7. Algoritmos para dilatar una imágen binarizada. 

Algoritmo a (Fig 7.a).Contrario a la erosión, se examina el elemento estructurante (3x7) de cada píxel, y se 
asigna el valor máximo de ese vecindario al píxel en la imagen de salida. 

Algoritmo b (Fig 7.b). Se implementó la dilatación como operación dual a la erosión. Se agregaron bordes 
blancos a la imagen para evitar falsas detecciones en los límites, ya que los bordes negros originales 
generaban artefactos. Se utilizan kernels asimétricos cuando se requiere mayor expansión en direcciones 
específicas, en este caso de 3x11. 

Algoritmo c (Fig 7.c). La dilatación expande las regiones blancas. Con el mismo elemento estructurante de 
3×6, cada píxel blanco en la imagen original propaga su valor sobre su vecindario. Así se engrosan estructuras 
y se conectan zonas cercanas en la radiografía. 

Algoritmo d (Fig 7.d). La dilatación es una operación morfológica que expande las regiones blancas en una 
imagen binaria. Sirve para rellenar huecos, aumentar el grosor de los objetos y unir componentes cercanos. 
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Tabla 1. Imágenes resultantes de las operaciones morfológicas realizadas a la radiografía base mediante los algoritmos 
a), b), c) y d). 

Operación morfológica Algoritmo a Algoritmo b Algoritmo c Algoritmo d 

 
Reducción de resolución 

    

 
Escala de grises 

    

 
Histograma de Escala de 
grises    

 

 
Binarizado 

    

 
Histograma de Binarizado 

 
  

 

 
Erosión 

    

 
Dilatación 

    

Cálculo de Centroides 

De acuerdo con la definición centroides se desarrollan cuatro diferentes lógicas de programación que se 
explican a continuación: 

Algoritmo a (Fig 8.a). Se invierte la imagen binaria ya que OpenCV identifica los objetos como regiones de 
píxeles mayores a 0 y el fondo como píxeles con valor 0, al tener el objeto de interés (región intramaxilar) en 
píxeles con valor 0, si no se invierte, toma el objeto como fondo, en cambio, al invertirlo, el objeto tiene valor 
distinto de 0, por lo que OpenCV puede etiquetarlos correctamente como componentes conectados. [22] 

Algoritmo b (Fig 8.b). Para calcular centroides, se usó un algoritmo de detección de regiones 8-conectadas, 
recorriendo la imagen para marcar píxeles no visitados y evitar redundancia. Las coordenadas de cada región 
se acumularon para obtener su área y centroide (promedio de coordenadas). Finalmente, se ordenaron por 
tamaño y se seleccionaron las R más grandes. 
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a)   b)   c)   d)  
Figura 8. Algoritmos para cálculo de centroides de áreas de interés. 

Algoritmo c (Fig 8.c). Para cada región de píxeles negros, se calcula el centroide ideal promediando las 
posiciones de todos sus píxeles. Luego, se busca el píxel dentro de la misma región que esté más cerca de 
ese punto promedio, y ese se toma como el centroide real. 

Algoritmo d (Fig 8.d). Este código localiza y resalta las regiones más grandes en una imagen binaria. 
Primero, invierte la imagen (cambia blancos por negros y viceversa) para que los objetos de interés sean 
blancos. Luego, identifica cada región conectada (conjunto de píxeles blancos adyacentes) y cuenta el 
número de píxeles en cada una. 

Obtención de la región intramaxilar 

De acuerdo con la definición región intramaxilar se desarrollan cuatro diferentes lógicas de programación que 
se explican a continuación: 

Algoritmo a (Fig 9.a). Se invierte la imagen para que OpenCV pueda detectar adecuadamente los objetos 
que originalmente tiene píxeles con valor a 0.[22] Se filtran las regiones que tocan los bordes ya que puede 
clasificar la imagen completa como región de interés. El filtrado por área mínima se hace para eliminar 
aquellos objetos que cumplen con las características anteriores pero tienen un área pequeña en comparación 
al área de la región intramaxilar, con estos criterios, se logra detectar correctamente la estructura sin 
intervención manual. 

Algoritmo b (Fig 9.b). Para obtener la región intramaxilar se utilizó floodFill de OpenCV. Primero se reescaló 
y dilató a un kernel de 5x20 la imagen reducida y las coordenadas del centroide seleccionado. Se aplicó el 
relleno desde el centroide usando conectividad-4, almacenando el resultado en una máscara. Los píxeles 
rellenados se marcaron con valor 127 y luego se convirtieron a 0 en la máscara final, mientras el fondo se 
estableció a 255. Esto permitió aislar la región de interés. 

Algoritmo c (Fig 9.c). De entre todas las regiones negras detectadas con área suficiente (>1000 píxeles), se 
selecciona aquella cuyo centroide esté más cerca del centro geométrico de la imagen. A partir de su etiqueta, 
se genera una nueva imagen en blanco donde únicamente se conserva esa región en negro. 

Algoritmo d (Fig 9.b). Primero, determina el centro geométrico de la imagen. Luego, a través de las regiones 
más grandes previamente identificadas, calcula el centroide de cada una y la distancia de ese centroide al 
centro de la imagen. Rastrea la región con la distancia más pequeña. Finalmente, dibuja un círculo en el 
centroide de la región más cercana y muestra tanto la imagen con el centroide marcado como una máscara 
que aísla solo esa región. 
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a)   b)   c)   d)  
Figura 9. Algoritmos para obtención de la región intramaxilar. 

Simetrización 

De acuerdo con la definición simetrización se desarrollan cuatro diferentes lógicas de programación que se 
explican a continuación: 

Algoritmo a (Fig 10.a). Se reconstruye una región binaria simétrica respecto a un eje vertical, tomando como 
referencia la mitad más dominante de la región detectada y marcando su eje central. Si el ancho original era 
impar, se agrega una columna blanca para igualar tamaños y evitar distorsión. 

Algoritmo b (Fig 10.b). La simetrización se realizó reflejando la región intramaxilar sobre el eje central vertical 
de la imagen. Se aplicó una operación AND entre la región original y su reflejo para conservar sólo las áreas 
simétricas. Finalmente, se filtraron componentes pequeños para eliminar ruido residual, obteniendo una 
representación bilateralmente simétrica de la anatomía maxilar. 

Algoritmo c (Fig 10.c). Este proceso aplica simetría vertical a una región binaria usando como eje el centroide 
previamente calculado. La mitad con más píxeles negros se toma como base para reflejarla en el lado 
opuesto. 

Algoritmo d (Fig 10.d). Se busca crear una imagen simétrica a partir de una región seleccionada, 
representando una sonrisa. Primero, encuentra el punto central horizontal de la región. Luego, divide la región 
en dos mitades: izquierda y derecha. 

Comparando el número de píxeles blancos en cada mitad. 

a)   b)   c)   d)  
Figura 10. Algoritmos para simetrizar la región intramaxilar. 

Obtención de Línea Central 

De acuerdo con la definición línea central se desarrollan cuatro diferentes lógicas de programación que se 
explican a continuación: 
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Algoritmo a (Fig 11.a). Se recorre cada columna dentro del bounding box, en dónde se detectan los extremos 
superior e inferior de la región negra y se calcula el punto medio vertical y se marca con un punto rojo. Esto 
representa una línea central de simetría vertical, útil para análisis morfológicos o mediciones dentales. 

Algoritmo b (Fig 11.b). La línea central se obtuvo analizando cada columna de la región simétrica. Para cada 
columna con píxeles negros (región intramaxilar), se calculó el punto medio entre los límites superior e inferior. 
Estos puntos medios se conectan para formar la línea central que representa el eje de simetría de la sonrisa. 

Algoritmo c (Fig 11.c). Este proceso identifica el punto medio de cada columna que contiene píxeles negros 
en una imagen binaria. Los puntos se conectan con una línea roja para representar visualmente la línea 
central de la figura. 

Algoritmo d (Fig 11.d). Se convierte una imagen en escala de grises a color, luego calcula el promedio 
vertical de los píxeles blancos en cada columna y dibuja puntos azules en esas posiciones, formando una 
línea central horizontal. 

a)   b)   c)   d)  
Figura 11. Algoritmos para obtención de línea central de la región intramaxilar. 

Obtención de spline 

De acuerdo con la definición spline se desarrollan cuatro diferentes lógicas de programación que se explican 
a continuación: 

Algoritmo a (Fig 12.a). Se seleccionaron 6 puntos para tener un mayor suavizamiento en la curva spline sin 
perder información importante de la región. 

Algoritmo b (Fig 12.b). Se ajustó un polinomio de grado 6 a los puntos centrales usando interpolación, 
eliminando duplicados primero. Con 3+ puntos se usó un polinomio de grado controlado; con menos, 
interpolación lineal. 

Algoritmo c (Fig 12.c). Este proceso suaviza la línea central de una región negra usando interpolación 
polinomial (spline). Se generan 20 puntos equidistantes a lo largo de la curva, con los cuales se genera un 
polinomio de grado 6. 

Algoritmo d (Fig 12.d). Se usa una función spline para trazar una línea roja suave que conecta puntos, 
mostrando la tendencia central de las áreas blancas. 

a)   b)   c)   d)  
Figura 12. Algoritmos para obtención de spline a partir de la línea central de la región intramaxilar. 
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Tabla 2. Imágenes resultantes de las operaciones siguientes realizadas a la radiografía base mediante los algoritmos a), 
b), c) y d). 

Operación Algoritmo a Algoritmo b Algoritmo c Algoritmo d 

Cálculo de centroides 

    

Obtención de región 
intramaxilar 

 
 

 
 

 
 

 

 

 
Simetrización 

 
 

 
 

 
 

 

 

Obtención de línea central 

 
 

 
 

 
 

 

 

 
Obtención de spline 

 
 

 
 

 
 

 

 

División en segmentos de la spline 

De acuerdo con la definición división de la spline se desarrollan cuatro diferentes lógicas de programación 
que se explican a continuación: 

Algoritmo a (Fig 13.a). Se marcan 32 divisiones regulares a lo largo de la spline, como una primera 
aproximación para análisis dental, para detectar los espacios interdentales correspondientes a cada pieza 
dental. 

Algoritmo b (Fig 13.b). La spline se dividió en 32 segmentos equidistantes mediante interpolación lineal. 
Primero se calculó la longitud total de la curva sumando las distancias entre sus puntos. Luego, se determinó 
la longitud objetivo para cada segmento (longitud_total/32). El algoritmo recorrió la spline acumulando 
distancia e insertando nuevos puntos cuando alcanzaba la longitud objetivo, garantizando una división precisa 
y uniforme. 

Algoritmo c (Fig 13.c). Se proyecta la spline generada en la imagen reducida original y se divide en 32 
segmentos para facilitar su análisis. 

Algoritmo d (Fig 13.d). Se crea una curva suave (spline) a través de esos puntos y la divide en 32 segmentos 
equidistantes. 

a)   b)   c)   d)  
Figura 13. Algoritmos para la división de la spline en segmentos. 
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Identificación de espacios interdentales 

De acuerdo con la definición espacios interdentales se desarrollan cuatro diferentes lógicas de programación 
que se explican a continuación: 

Algoritmo a (Fig 14.a). Se utiliza una imagen auxiliar generada desde la combinación entre una imagen 
complementaria, la cuál su función es resaltar los dientes, y una imagen con el gradiente de sobel que ayuda 
a detectar los bordes, teniendo como resultado una imagen que mejora la visibilidad de los contornos 
dentales y refuerza el contraste, adquiriendo una mayor diferencia visual entre los espacios interdentales a 
las estructuras que los rodean. Al colocar la spline por arriba (arcada superior) o por abajo (arcada inferior) 
de las coronas, se centra la búsqueda de zonas más brillantes a solo el área de interés, eliminando posibles 
errores en la detección. Se divide la spline en 17 segmentos definidos por porcentajes adaptados al ancho 
de cada diente, estos porcentajes se obtuvieron de la tabla I. El filtro de distancia se aplica para conservar 
solo un punto por cada mínimo 5 píxeles en X, esto evita detecciones múltiples cercanas, reduce el ruido 
visual y asegura un solo punto por segmento. 

a)   b)   c)   d)  
Figura 14. Algoritmos para la identificación de espacios interdentales. 

Algoritmo b (Fig 14.b). Primero se generó una imagen auxiliar mezclando el complemento (para resaltar 
espacios oscuros) y el gradiente Sobel (para enfatizar bordes). Las splines desplazadas superior e inferior se 
calcularon paralelas a la línea central, manteniendo la anatomía dental. Los intervalos precisos se 
determinaron usando porcentajes aproximados del ancho de las piezas dentales (Tabla I). Para cada 
intervalo, se analizó una ventana orientada perpendicularmente a la spline, buscando regiones con alta 
intensidad (combinación de claridad y bordes). Finalmente, se aplicó un filtro de distancia para eliminar 
detecciones redundantes, obteniendo diastemas anatómicamente plausibles. 
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Algoritmo c (Fig 14.c). El algoritmo comienza con la generación de una imagen auxiliar (complemento 
+ sobel) y  la proyección en ésta de la spline obtenida previamente, de la cual se derivan dos curvas 
desplazadas (arcada superior e inferior) para abarcar las zonas donde comúnmente se localizan los espacios 
interdentales (arriba y abajo de las coronas). A continuación, cada curva se divide en 17 intervalos 
desiguales, calculados según porcentajes anatómicos promedio (Tabla III) para representar correctamente 
las 16 piezas dentales. Para evitar que los puntos de detección coincidan con las piezas dentales, se aplica 
un desplazamiento hacia la derecha en los intervalos, asegurando que la segmentación se sitúe entre los 
dientes, no sobre ellos. Sobre cada intervalo se proyectan ventanas rectangulares (N×M) que recorren las 
curvas buscando las regiones más brillantes, asociadas a los posibles diastemas. El punto con mayor 
intensidad dentro de cada intervalo se selecciona como candidato. Finalmente, se aplica un filtro de distancia 
euclidiana para eliminar duplicados: si dos puntos están demasiado cerca (menos del 70% del ancho 
promedio de un diente), se conserva el que se ubica en la zona más brillante. Esto mejora la precisión y 
asegura una distribución anatómicamente coherente. La distancia euclidiana entre dos vectores a y b se 
define como: 

 

𝑑(𝑎, 𝑏) = ||𝑎 − 𝑏|| → 𝑑(𝑎, 𝑏) =     (14)[17] 

 

Algoritmo d (Fig 14.d) Se toma la imagen anteriormente reducida en escala de grises y a partir de una 
máscara, identifica los límites superior e inferior de las regiones blancas. Luego, traza dos curvas suaves 
(splines) que siguen estos límites. En puntos específicos a lo largo de estas curvas, el código verifica si hay 
una región oscura cercana. Si se detecta una región oscura, dibuja una línea vertical azul sobre el spline 
superior y una línea vertical verde debajo del spline inferior. Finalmente, muestra la imagen original con 
estas líneas superpuestas, indicando visualmente dónde las áreas blancas de la máscara colindan con zonas 
oscuras de la imagen de entrada. 

Los resultados de cada una de las partes del algoritmo se encuentran en las tablas I, II y IV de igual forma, 
se hizo el análisis de cada algoritmo y se concluyó que, aunque las lógicas de programación son diferentes 
en cada caso, el objetivo de lograr la identificación de espacios interdentales en un tiempo menor al que la 
inteligencia artificial lo logra se completo, ya que con estos códigos se tiene un promedio de procesamiento 
de máximo 15 segundos. El compilado de los códigos se encuentra en: 
  

(𝑥 −	𝑥	 ) −	(𝑦 −	𝑦	 )	
	 	

	 	 	 	

Compilación de códigos a), b), c) y d) 
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Tabla 4. Imágenes resultantes de las operaciones finales realizadas a la radiografía base mediante los algoritmos a), b), 
c) y d). 

Operación Algoritmo a Algoritmo b Algoritmo c Algoritmo d 

 
División de spline 

    

 
Identificación de diastemas 

Imagen auxiliar 
 

 

Imagen auxiliar 
 

 

Imagen auxiliar 
 

 

Imagen auxiliar 
 

 
Imagen con splines 
 

 

Imagen con splines 
 

 

Imagen con splines 
 

 

Imagen con splines 
 

 

Imagen con espacios 
interdentales 

 

 

Imagen con espacios 
interdentales 

 

 

Imagen con espacios 
interdentales 

 

 

Imagen con espacios 
interdentales 

 

 

Conclusiones 
El desarrollo del algoritmo demuestra que es posible implementar herramientas computacionales capaces 
de adaptarse a las variaciones anatómicas y técnicas presentes en este tipo de imágenes médicas. A través 
de la combinación de operaciones morfológicas, procesamiento, análisis de centroides y el ajuste de splines, 
fue posible aislar de forma eficiente la región intramaxilar, generar líneas centrales suavizadas y localizar 
con precisión los espacios interdentales relevantes para el diagnóstico. Cada una de las versiones 
propuestas del algoritmo tiene fortalezas particulares en etapas específicas del procesamiento, permitiendo 
comparar enfoques alternativos para cada paso. La incorporación del análisis por segmentos, junto con el 
uso del complemento de imagen y operadores de Sobel, permitió aumentar significativamente la visibilidad 
y precisión en la delimitación de los espacios interdentales, incluso en condiciones de bajo contraste o ruido 
estructural. Los resultados obtenidos en las imágenes de prueba sugieren que este enfoque puede 
constituirse como una herramienta de apoyo clínico. Asimismo, el identificar los espacios interdentales en 
una radiografía panorámica dental sienta las bases para futuras mejoras que incorporan técnicas de 
aprendizaje automático o análisis volumétrico, lo cual podría ampliar su aplicabilidad en contextos 
odontológicos reales, como el análisis morfológico de las piezas dentales para analizar propiedades de 
interés o alguna malformación que a simple vista no es evidente. 
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