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Resumen 

Se presenta el desarrollo de un sistema de detección temprana de incendios forestales basado en tecnología 
IoT, validado en condiciones controladas de laboratorio. El prototipo integra sensores de gases, partículas y 
variables ambientales, conectados a una placa LilyGO LoRa32 con transmisión en tiempo real vía Bluetooth. 
Para evaluar su desempeño, se diseñó una cámara cerrada de combustión donde se realizaron pruebas con 
combustibles representativos de zonas forestales. Los datos fueron analizados mediante técnicas de 
reducción de dimensionalidad (PCA) y clasificación (Random Forest), logrando una diferenciación efectiva 
entre tipos de quema, con una precisión del 88.89%. Se identificaron los sensores más relevantes para la 
clasificación y se descartaron aquellos con baja aportación, como temperatura y humedad. Estos resultados 
permiten optimizar el sistema y confirman su potencial para ser implementado en campo en una segunda 
fase, utilizando conectividad LoRaWAN para monitoreo ambiental en tiempo real. 

Palabras clave: incendios forestales, alerta temprana, sensores, tecnología IoT. 

Introducción 

En las últimas décadas, los incendios forestales han adquirido una magnitud sin precedentes a nivel global, 
convirtiéndose en una amenaza creciente para los ecosistemas, la biodiversidad y las poblaciones humanas 
cercanas a zonas forestales (NOAA, s.f.). Estos eventos extremos no sólo representan una pérdida 
ecológica, sino también un importante riesgo socioeconómico debido a su capacidad destructiva y a la 
liberación masiva de gases contaminantes y de efecto invernadero. Aunque algunos incendios pueden ser 
provocados por causas naturales, como descargas eléctricas, en el caso de México el 99% de los 
incendios forestales tienen un origen antrópico, vinculados a actividades humanas como fogatas mal 
apagadas, quemas agrícolas, y prácticas ilícitas (CONAFOR, 2024)1. 

En particular, el estado de Guanajuato ha experimentado un incremento alarmante en la incidencia de 
incendios forestales en los últimos años. De acuerdo con un análisis de los puntos de calor detectados por el 
satélite VIIRS de la NASA, la presencia de incendios en zonas forestales del estado se ha multiplicado por 
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trece entre 2002 y 2024, reflejando una tendencia crítica que demanda soluciones tecnológicas innovadoras. 
En ese mismo periodo, la superficie afectada por incendios en todo el país se duplicó, pasando de 849,536 
hectáreas en 1998 a más de 1.6 millones de hectáreas en 2024, consolidando la urgencia de implementar 
mecanismos de alerta temprana y monitoreo efectivo (CONAFOR, 2024) 2. 

Figura 1. Riesgo a incendios de vegetación en la zona de interfaz urbano-forestal de la zona metropolitana de la ciudad de Guanajuato. (Ayala-
Carrillo et al., 2022) 

A pesar de los avances tecnológicos actuales, los sistemas de monitoreo basados en plataformas satelitales, 
como MODIS (con 1 km de resolución) y VIIRS (con 375 m), presentan limitaciones importantes para la 
detección oportuna de incendios en sus primeras etapas. Estas plataformas requieren que el área afectada 
por el fuego supere las 20 hectáreas para ser detectada y, además, su funcionamiento depende de la 
coincidencia temporal entre el evento y el paso del satélite, lo cual no siempre ocurre (Ayala-Carrillo et al., 
2022). Esta limitación en la capacidad de detección temprana ha motivado la búsqueda de alternativas 
basadas en sensores terrestres, redes inalámbricas y plataformas digitales de comunicación en tiempo real. 

El avance en el desarrollo de dispositivos electrónicos, redes de comunicación y plataformas de gestión ha 
permitido la adopción de arquitecturas basadas en el Internet de las Cosas (IoT) para la vigilancia ambiental 
(Wooster et al, 2011). El IoT se refiere a la interconexión de dispositivos físicos capaces de recopilar, 
procesar y transmitir datos en tiempo real mediante redes digitales (Wolterbeek et al, 2019)). Aplicado al 
monitoreo de incendios forestales, el IoT permite distribuir nodos sensoriales que detectan variables clave 
como temperatura, humedad, gases combustibles, radiación infrarroja y partículas suspendidas, con la 
posibilidad de enviar alertas inmediatas a plataformas digitales, autoridades o usuarios (Kang et al, 2024). 

Dentro del ecosistema IoT, la tecnología LoRa (Long Range) ha emergido como una solución eficiente para 
la comunicación inalámbrica de largo alcance. Esta tecnología opera en la banda de radiofrecuencia sin 
licencia ISM (Industrial, Scientific, and Medical), y se caracteriza por su bajo consumo energético, 
alta penetración de señal y gran alcance, ideal para zonas rurales, forestales o de difícil acceso (Kang et 
al, 2024). A través del protocolo LoRaWAN, los sensores pueden enviar datos a un gateway central, el cual 
a su vez los transmite a servidores en la nube mediante WiFi, 3G o redes similares. 

En países como Estados Unidos y Malasia, se han desarrollado e implementado con éxito sistemas basados 
en IoT y LoRa para la detección temprana de incendios. Por ejemplo, el sistema AlertWildfire (University of 
Nevada, Reno, 2018) y la propuesta de detección basada en sensores Arduino y monitoreo en tiempo real 
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de (Islam et al, 2022) han mostrado altos niveles de precisión en la identificación de condiciones críticas. Sin 
embargo, en el contexto mexicano estas tecnologías aún son poco comunes.  

Figura 2. Incremento de puntos de calor en zonas forestales del estado de Guanajuato detectados por el satélite VIIRS de la NASA para el periodo de 
tiempo del 2000 al 2024. (Ayala-Carrillo et al., 2022) 

Como parte del desarrollo del sistema, se contempla una fase experimental centrada en la quema controlada 
de materiales combustibles representativos de la región, con el fin de caracterizar las respuestas sensoriales 
asociadas a cada tipo de emisión. 

Dado que los sensores generan grandes volúmenes de datos multivariados, el análisis de la información 
recolectada presenta un desafío vinculado a su alta dimensionalidad. Para abordar esta problemática y 
extraer conocimiento útil desde los datos crudos, se implementó una estrategia de análisis estadístico y de 
aprendizaje automático basada en el Análisis de Componentes Principales (PCA) y el algoritmo Random 
Forest. 

El Análisis de Componentes Principales permite reducir la dimensionalidad del conjunto de datos, 
preservando la información más relevante al identificar las direcciones de mayor varianza en el espacio 
multivariado. Esta técnica facilita la visualización y comprensión de los patrones subyacentes en las 
emisiones. En complemento, el algoritmo Random Forest, una técnica robusta de clasificación se emplea 
para construir modelos predictivos capaces de capturar relaciones no lineales entre variables, mejorar la 
precisión en la identificación de fuentes de combustión y proporcionar resiliencia frente al ruido y la 
variabilidad propia de las mediciones ambientales.  

El proyecto completo contempla dos fases: una primera etapa de desarrollo, calibración y validación del 
sistema en condiciones de laboratorio controladas, y una segunda fase de implementación en campo 
utilizando conectividad inalámbrica de largo alcance. Este artículo se centra exclusivamente en la primera 
fase, en la cual se diseñó un nodo multisensorial y se analizaron las firmas de emisión de distintos 
combustibles mediante pruebas experimentales y herramientas estadísticas. 
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Figura 3. Diagrama de flujo general de las etapas del proyecto general del proyecto. 

La propuesta se enfoca en detectar señales incipientes de combustión a través del monitoreo en tiempo real 
de gases, partículas y variables ambientales, permitiendo generar alertas desde las primeras etapas del 
fuego. Esta aproximación, basada en sensores multivariables y arquitectura IoT, no solo busca evaluar el 
comportamiento de materiales combustibles comunes en zonas de riesgo, sino también establecer las bases 
para sistemas inteligentes que reduzcan los falsos positivos y aumenten la eficacia en escenarios reales. 

Metodología

Diseño y construcción del sistema de monitoreo. 

El desarrollo del sistema de detección temprana de incendios forestales se abordó desde una perspectiva de 
diseño modular, priorizando la portabilidad y la capacidad de detección multi-variable. Para ello, se construyó 
un nodo sensorial basado en la placa de desarrollo LilyGO TTGO LoRa32, que integra conectividad por 
Bluetooth, y WiFi, permitiendo tanto el monitoreo local en tiempo real como la transmisión remota de datos 
hacia plataformas IoT. 

Este nodo fue diseñado para recopilar datos a partir de una serie de sensores que permiten caracterizar tanto 
las condiciones ambientales como la presencia de productos derivados de la combustión. Los sensores 
incorporados se agrupan de la siguiente manera: 

• Sensores ambientales: permiten registrar temperatura y humedad relativa, parámetros clave para
determinar si las condiciones del entorno son propensas al inicio o propagación de incendios
forestales.

• Sensores de gases: se incluyeron sensores capaces de detectar y cuantificar en partes por millón
(ppm) gases típicamente emitidos durante procesos de combustión, incluyendo dióxido de carbono
(CO₂), dióxido de nitrógeno (NO₂), metano (CH₄), compuestos orgánicos volátiles (VOC),

compuestos orgánicos volátiles totales (TVOC) y dióxido de carbono equivalente (eCO₂). Estos
compuestos se utilizan como indicadores directos del inicio de un proceso de quema.

• Sensores de material particulado: se integró un sensor óptico de medición de partículas en
suspensión que permite detectar PM 1.0, PM 2.5 y PM 10. Estas partículas, especialmente las de
menor tamaño, son altamente indicativas de combustión incompleta, siendo útiles para detectar
tanto incendios activos como brasas o humos residuales.

Figura 4. Conjunto de sensores conectados a la placa LILYGO

Además, se desarrolló una aplicación móvil en la plataforma Virtuino, que permite la comunicación Bluetooth 
con el nodo. Desde esta app, los usuarios pueden visualizar en tiempo real los datos medidos, registrar 
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lecturas para análisis histórico y ejecutar procedimientos de calibración. Esta interfaz es esencial tanto para 
pruebas de laboratorio como para monitoreo en campo. 

                  
Figuras 5 y 6. App desarrollada en Virtuino. 

Pruebas experimentales de combustión y evaluación del nodo sensorial. 

Con el objetivo de verificar el comportamiento del sistema ante diferentes tipos de incendios potenciales, se 
diseñó un protocolo de pruebas en condiciones controladas utilizando combustibles representativos de zonas 
de interfaz urbano-forestal. Para ello, se seleccionaron cinco materiales comúnmente presentes en áreas de 
vegetación mixta: hojarasca seca, pasto seco, carbón vegetal y residuos plásticos (polietileno de alta 
densidad y polipropileno). Estos combustibles fueron recolectados en la comunidad de Santa Ana, ubicada 
en la zona serrana del municipio de Guanajuato. Esta localidad fue seleccionada por sus características 
ecológicas, su propensión histórica a eventos de incendio, y por representar una fuente realista de biomasa 
susceptible de ignición. 

Figura 7. Combustibles utilizados para el análisis. 

Para realizar las pruebas, se diseñó un sistema cerrado de conducción y análisis de gases. Este sistema fue 
construido utilizando dos matraces Erlenmeyer y un recipiente hermético conectados en serie mediante 
tubería hermética: 

1. Cámara de combustión: un matraz con embudo Büchner donde se depositaba el combustible. La 
ignición se realizó de forma controlada. 
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2. Cámara de estabilización: un segundo matraz que actuaba como amortiguador para garantizar un 
flujo de gases y evitar pulsaciones que pudieran alterar las mediciones. 

3. Cámara de detección: el tercer compartimiento estaba sellado herméticamente y contenía el nodo 
sensorial. En este punto, los gases de la combustión interactuaban directamente con los sensores 

 

Figura 8. Sistema cerrado de conducción de gases para su posterior análisis. 

El movimiento de gases a lo largo del sistema fue facilitado por un motor de succión que mantenía un flujo 
constante de aire desde la cámara de combustión hasta la de detección, evitando que gases externos 
contaminasen la muestra. Esta configuración simuló un ambiente donde el sensor es expuesto de manera 
directa y específica a los compuestos derivados de la quema, replicando de forma escalable las condiciones 
reales de un incendio incipiente. 

Durante cada ensayo, se monitorearon en tiempo real todas las variables sensadas (temperatura, humedad, 
PM 1.0, PM 2.5, PM 10, CO₂, NO₂, CH₄, VOC, TVOC y eCO₂). La recolección de datos se limitó a dos 
periodos clave: 

• Periodo de combustión activa, donde se observó el incremento progresivo de las concentraciones 
de gases y partículas. 

• Periodo de recuperación, en el cual los sensores regresaban gradualmente a sus valores de 
referencia. Esta fase permitió analizar el tiempo de respuesta del sistema y su estabilidad. 

Los datos obtenidos permitieron identificar los perfiles característicos de cada tipo de combustible, 
diferenciando la intensidad, duración y composición de las emisiones. A partir de estos registros se 
construyeron curvas preliminares que servirán para la futura calibración del sistema y la identificación 
automatizada de eventos de quema. 

Análisis de datos mediante Google Colab. 

La información capturada por los sensores se exportó a hojas de cálculo en Excel para su organización y 
limpieza preliminar, y posteriormente se analizó utilizando herramientas estadísticas.  

Con el fin de reducir la dimensionalidad del conjunto de datos y facilitar su interpretación, se aplicó un análisis 
de Componentes Principales (PCA). Esta técnica permite identificar patrones de comportamiento entre los 
diferentes tipos de combustión, resaltando las variables que mayormente influyen en la variabilidad de los 
datos, posterior se utilizó el algoritmo Random Forest como método de clasificación pues ayuda a distinguir 
con precisión entre los distintos combustibles en función de sus firmas químicas.  
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Se generaron gráficos de dispersión tanto en Excel como en Python que visualizaron la distribución de los 
datos según sus componentes principales, mostrando agrupamientos distintivos asociados a cada tipo de 
combustible. 

Resultados 

Tecnología IoT. 

La arquitectura IoT implementada demostró su utilidad en los ensayos de laboratorio. Gracias al enlace 
Bluetooth, las lecturas de los sensores se visualizaron en tiempo real en la app Virtuino, permitiendo registrar 
automáticamente las variables ambientales conforme transcurría cada prueba. Esto facilitó que el equipo de 
investigación monitoreara dinámicamente cada experimento: por ejemplo, al variar los tipos de combustible 
(madera, papel, carbón, etc.), se observó al instante cómo cambiaban las concentraciones de gases y las 
partículas generadas. En la práctica, la interfaz gráfica de Virtuino (que “permite visualizar el proyecto IoT” 
mediante widgets) mostró en vivo las gráficas de las mediciones, simplificando la inspección de los datos. 
Gracias a este registro continuo, se identificaron patrones característicos de emisión: por ejemplo, se 
evidenciaron picos de CO justo al encender el fuego y comportamientos típicos en la evolución de las 
partículas durante cada etapa de la combustión. En conjunto, el uso de la aplicación Virtuino con transmisión 
Bluetooth optimizó la captura de datos, aceleró el análisis de resultados y facilitó la detección de tendencias 
en las emisiones de gases y partículas durante las pruebas de laboratorio. 

Google Colab. 

Cabe destacar que se descartaron las variables de temperatura y humedad porque no aportaban información 
útil para diferenciar tipos de combustión. La temperatura, además, estaba probablemente influenciada por el 
calor de la máquina de aspiración, lo que distorsionaba su valor real. Por su parte, la humedad mostró muy 
poca variación durante las mediciones, lo que confirma su baja relevancia en este contexto. Los resultados 
de calibración respaldaron esta decisión, ya que ambas variables tuvieron un impacto mínimo en la 
separación entre clases. Sin embargo, se reconoce que en condiciones reales de campo, donde los factores 
ambientales varían más, estos datos podrían adquirir mayor valor para la detección de incendios forestales. 

La Figura 9 presenta el análisis de componentes principales (PCA) aplicado a las mediciones de los sensores, 
proyectando los datos en las dos primeras componentes principales (PC1 y PC2). La Componente Principal 
1 (PC1) captura el 47.62% de la varianza total en los datos de los sensores, mientras que la Componente 
Principal 2 (PC2) explica un 20.26% adicional. Conjuntamente, estas dos componentes explican el 67.88% 
de la varianza total, lo que sugiere que una parte significativa de la información discriminatoria entre las 
mediciones está contenida en estas dos dimensiones. Al observar la distribución de los puntos por color, se 
aprecia cierta tendencia a la formación de grupos basados en el tipo de combustible. Notablemente, las 
mediciones correspondientes al combustible Carbón (puntos naranja) tienden a segregarse hacia la derecha 
del gráfico, indicando que las lecturas de los sensores para este tipo de quema son distintivamente diferentes 
de otros combustibles en la dirección de PC1. Otros combustibles, como BASE, Pasto seco, Polipropileno, 
Polietileno y Hojarasca, muestran un mayor grado de solapamiento en el espacio definido por PC1 y PC2, 
aunque pueden existir sub-estructuras o tendencias de agrupación menos marcadas. La separación 
observada, particularmente para el Carbón, sugiere que los sensores son capaces de capturar características 
que permiten diferenciar al menos algunos tipos de quema. Sin embargo, el solapamiento entre otros 
combustibles en estas dos primeras componentes principales indica que una clasificación perfecta basada 
únicamente en PC1 y PC2 podría ser limitada. 
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Figura 9. Gráfico de PCA (Agrupación por tipo de combustible). 

La Figura 10 muestra la matriz de confusión del modelo Random Forest aplicado al conjunto de prueba. Este 
gráfico detalla el número de predicciones correctas e incorrectas para cada clase (tipo de combustible). La 
evaluación del modelo Random Forest con el conjunto de prueba arrojó una precisión general (Accuracy) del 
88.89%. Este valor indica que, en promedio, el modelo es capaz de clasificar correctamente el tipo de 
combustible a partir de las lecturas de los sensores en casi el 89% de los casos en datos no vistos durante 
el entrenamiento. La matriz muestra que el modelo es altamente efectivo en la identificación de BASE, 
Carbón, Hojarasca y Polipropileno. Para estas clases, la mayoría (o todas) las predicciones en el conjunto de 
prueba fueron correctas, con pocos o ningún caso de confusión con otros combustibles. Esto se refleja en las 
altas puntuaciones de Precision, Recall y F1-Score para estas categorías en el reporte de clasificación. La 
matriz también revela que las principales dificultades del modelo se presentan al diferenciar Pasto seco y 
Polietileno. Específicamente, se observa que: 

• Una medición real de Pasto seco fue clasificada erróneamente como Hojarasca. 

• Tres mediciones reales de Polietileno fueron clasificadas erróneamente como Hojarasca. 

Este patrón de errores sugiere que las lecturas de los sensores para Pasto seco y Polietileno pueden 
compartir características que se solapan con las de Hojarasca, lo que lleva a confusiones por parte del modelo 
(Rodrigues et al., 2016).  

 

Figura 10. Gráfico de Matriz de Confusión (Mapa de Calor). 

En la Figura 11 ilustra la importancia relativa de cada sensor para la clasificación del tipo de combustible, 
según lo determinado por el modelo Random Forest entrenado. Los sensores NO2, VOC, Eco2, PM 2.5 y PM 
10 fueron los que más contribuyeron a la capacidad del modelo para clasificar correctamente los 
combustibles, destacándose como los más influyentes. En contraste, sensores como PM 1.0, tVOC, CO2 y 
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CH4 mostraron una menor relevancia. En particular, al eliminar los sensores tVOC y CH4, el rendimiento del 
modelo no se vio afectado, lo que sugiere que su aporte es limitado o redundante frente a los sensores más 
informativos. En resumen, para optimizar el sistema de clasificación, conviene centrarse en los sensores más 
discriminatorios, mientras que la inclusión de los menos relevantes puede evaluarse según el contexto o las 
condiciones del entorno. 

 

Figura 11. Gráfico de la importancia de los sensores utilizados, 

Calibración de sensores. 

Los siguientes gráficos obtenidos muestran la evolución temporal de cada sensor tras encender los 
combustibles en el sistema cerrado. En todos los casos se observa un rápido pico de respuesta tras la 
ignición, seguido de un retorno gradual al valor de referencia ambiental.  

Sensores ambientales. 

En las curvas de temperatura de la figura 12 se aprecia que, al iniciar la combustión, la lectura térmica se 
eleva varios grados por encima del valor base (19 °C). Los picos más altos se registraron con los plásticos 
(polipropileno 26.2 °C y polietileno 5.8 °C) y la hojarasca (25.8 °C), mientras que el pasto seco presentó un 
aumento menor (22.1 °C). Simultáneamente, en el gráfico presenta el registro de la humedad relativa (%HR) 
mostró caídas inversamente proporcionales al calor: por ejemplo, con polipropileno la HR descendió de 56 % 
a 43 %, y con hojarasca o carbón cayó hasta 38–39 %. Estos cambios modestos concuerdan con estudios 
que han mostrado que sensores de temperatura/humedad por sí solos apenas detectan incendios iniciales. 

 

Figura 12. Gráfico de Temperatura y Humedad relativa.

 

En resumen, los sensores ambientales registr0aron cambios sólo moderados en todas las pruebas. Este 
resultado es consistente con la observación de que las variaciones de temperatura y humedad asociadas a 
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incendios muy incipientes suelen ser pequeñas, por lo que estos sensores por sí solos no generarían alertas 
tempranas claras en nuestras pruebas. 

Sensores de Material particulado. 

Los sensores de PM1.0, PM2.5 y PM10 registraron aumentos muy pronunciados en presencia de humo para 
todos los combustibles, con valores pico muy superiores al nivel base. En la figura 13 se observa que los 
PM10, el combustible sintético polietileno generó la mayor concentración máxima (1450 ppm, alrededor de 
15–16 veces el valor base inicial de 97 ppm), seguido de polipropileno (920 ppm), mientras que combustibles 
naturales como pasto (881 ppm) y hojarasca (808 ppm) fueron algo menores. El carbón vegetal produjo el 
pico más bajo (141 ppm). Las curvas de PM10 suben bruscamente en los primeros segundos de combustión 
y luego permanecen elevadas (las lecturas no retornan al nivel base durante la duración del experimento, 
manteniendo una meseta alta). Un patrón similar se observa en PM2.5 en la figura 14 (valores pico 1195 ppm 
en polietileno, 828 ppm en polipropileno, 838 ppm en pasto, 778 ppm en hojarasca y 136 ppm en carbón). 
Para PM1.0 también hubo incrementos significativos: todos los combustibles (excepto carbón) alcanzaron 
picos similares (280–310 ppm), aunque los tiempos de pico variaron. Estos comportamientos indican que la 
liberación de partículas finas ocurre muy pronto en la combustión de plásticos, y algo más tardía en biomasa. 
En general, los sensores de PM muestran curvas muy correlacionadas entre sí (PM10, PM2.5 y PM1.0 suben 
y descienden juntos), señalando que los cinco combustibles generan partículas de todos los tamaños. 

 

Figura 13. Gráfico de PM 10. 
 

 
 

Figura 14. Gráfico de PM 2.5. 

 

Sensores de gases de combustión 

En las pruebas de gases combustibles se analizaron dos grupos de sensores en forma comparativa. 

Los sensores de gases registraron aumentos rápidos de CO₂ al iniciar la combustión mostrados en la figura 

15. El sensor digital eCO₂ (ppm) saltó desde 425 ppm (valor base) a entre 498 ppm (hojarasca) y 789 ppm 
(polipropileno) en las primeras mediciones. Estas concentraciones permanecieron estables en su mayoría 
durante el resto de la prueba (curvas casi planas). En particular, polipropileno alcanzó el valor más alto (794 
ppm), seguido de pasto (636 ppm) y polietileno (560 ppm); el carbón mostró concentraciones más bajas (517 
ppm) similares al fondo. En la figura 16 se muestra el sensor analógico de CO₂ (voltaje invertido). Este mostró 

la tendencia inversa (a menor voltaje, mayor concentración de CO₂). Así, combustibles con eCO₂ mayor 
correspondieron a voltajes bajos: polipropileno mantuvo 2.30 V (el mínimo observado), pasto alrededor de 
2.37 V, y carbón 2.38 V (mayor voltaje, menor CO₂). En todos los casos el voltaje de CO₂ osciló levemente 

tras el pico inicial (por ejemplo, pasto bajó de 2.37 V a 2.30 V), reflejando que el CO₂ permaneció alto mientras 

duró la combustión. En resumen, los plásticos produjeron los niveles de CO₂ más altos (tanto en ppm como 

en el voltaje correspondiente), mientras que el carbón y la hojarasca generaron menor CO₂. 
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Figura 15. Gráfico de los equivalentes de dióxido de carbono.                                 Figura 16.  Gráfico de dióxido de carbono.

Y finalmente los sensores analógicos de VOC y NO₂ también mostraron picos significativos durante la 
combustión. El sensor VOC (en voltios) midió la presencia de compuestos orgánicos volátiles como se 
muestra en la figura 17. Los valores más elevados correspondieron al pasto seco (pico 1.90 V) (1.73 V) 
Polietileno y hojarasca alcanzaron valores intermedios (1.37–1.41 V), y el carbón produjo la señal más baja 
(1.01 V). En la figura 18 se muestran las curvas de VOC muestran aumentos graduales durante la quema y 
cierta meseta alta hacia el final; en polietileno el pico ocurrió antes, mientras que pasto y polipropileno tardaron 
más en alcanzar el máximo. Por su parte, el sensor NO₂ (voltaje directamente proporcional) registró picos 
claros: de nuevo el pasto fue el más alto (pico ~0.90 V) seguido de polipropileno (0.70 V). Hojarasca y 

polietileno tuvieron picos moderados (0.50 V), y el carbón prácticamente no generó señal de NO₂ (0.35 V 

constante). Las curvas de NO₂ subieron después de los picos de PM y VOC, indicando quizá una fase de 
combustión con más óxidos al final.  

 

 

Figura 17.  Gráfico de los compuestos orgánicos volátiles (VOC). 
 

 
 

Figura 18. Gráfico del dióxido de nitrógeno (NO2).

 

Conclusiones 
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Este proyecto logró cumplir su objetivo de desarrollar una tecnología IoT, en condiciones de laboratorio, 
orientada a la detección temprana de incendios forestales mediante el análisis en tiempo real de emisiones 
generadas por distintos combustibles. Se construyó un prototipo sensorial que integró múltiples sensores 
ambientales, con transmisión Bluetooth y visualización móvil, validado experimentalmente mediante un 
sistema cerrado de combustión. 

Las pruebas con materiales como hojarasca, pasto, polietileno, polipropileno y carbón permitieron identificar 
patrones específicos de emisión, mientras que el análisis de datos mediante Google Colab, PCA y Random 
Forest facilitó la diferenciación entre tipos de quema. Las gráficas de Excel aportaron una visión cualitativa 
complementaria que fortaleció la interpretación de resultados. 

Esta primera etapa experimental permitió calibrar el sistema, seleccionar sensores relevantes y establecer 
criterios para minimizar falsas alarmas. Con ello, se sientan las bases para una segunda fase de 
implementación en campo, con conectividad ampliada mediante Lora WAN y despliegue territorial. 
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