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Abstract

Accurate diagnosis and early treating of brain tumors have a positive and significant impact on a person's
quality of life. For this reason, several studies are currently being conducted to improve medical image
processing and the detection and accurate localization of brain tumors. This has led to the implementation of
Deep Learning (DL) in medical image analysis. Thus, this study presents a lightweight U-Net to reduce
computational costs in the detection of brain tumors. This detection was performed by selecting the best slice
from the Magnetic Resonance Images (MRI) of several modalities (T1C, T2W, and T2F) in the BrasTS2024
dataset. The proposed model automatically selects the best slice by extracting the slice with the major tumor
content from the mask. An adaptive learning-rate scheduler was applied during training to ensure stable
convergence. Among the modalities, T2W produced the best quantitative results, achieving a Dice coefficient
of 0.760, an IoU of 0.623, and a sensitivity of 0.842. In contrast, T2F yielded visually comparable yet slightly
lower metrics. These findings indicate that reducing model complexity needs not compromise accuracy and
highlight the T2W sequence as the most informative single slice for tumor delineation.

Keywords: Brain Tumors; Convolutional Neural Networks; Lightweight U-Net; Semantic Segmentation;
Magnetic Resonance Imaging.

Introduction

World Health Organization (WHO) has developed several studies finding that cancer has been responsible for
approximately 9.7 million deaths per year (Canetta, 2021). Brain cancer accounts for 248,500 million deaths
per year worldwide, ranking 12th among the different types of cancer in terms of mortality (World Health
Organization, 2022). Brain tumors are abnormal masses of tissue characterized by the uncontrolled
proliferation of cells (Jose et al., 2022). They originate in the spinal canal or brain (Moini et al., 2023). On one
hand, brain tumors are classified into primary tumors, which originate directly in the brain and can be benign
or malignant. On the other hand, metastatic tumors, which do not originate in the brain but spread to it through
the bloodstream, are usually malignant (Goceri, 2025). Hence, the difference between benign and malignant
tumors lies in their behavior; that is, the former is characterized by slow growth, generally has well-defined
edges, and rarely spreads. Notably, malignant tumors are invasive and grow rapidly (American Brain Tumor
Association, 2018). Figure 1 presents the World Health Organization (WHO) classification system, which
categorizes tumors into four distinct grades (Sinning, 2017).
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Figure 1. Tumor classification is based on grades.

Among the most common methods for diagnosing and monitoring tumors, Magnetic Resonance Imaging (MRI)
plays a crucial role. Unlike computed tomography (CT) and X-rays, MRI allows us to visualize different organs
and tissues in the body without the use of ionizing radiation. It generates magnetic fields and radio waves to
obtain detailed images of the human body. This imagining technique is based on the mutual interaction
between atomic nuclei and magnetic fields generated by the magnets of the magnetic resonator. This
magnetic field causes the body's atoms to align in the same direction, and then radio waves are sent to
displace these atoms from their original positions (Bangare, 2022). When the radio waves are turned off, the
atoms return to their original positions, releasing energy that is captured and processed by a computer to
produce an image of the anatomical region being examined (Carter et al., 2022). These images are obtainable
through different weightings or sequences, which correspond to how the images are generated; the most
common are T1 and T2 (Hattingen & Pilatus, 2016). For instance, T1-weighted images reflect the time it takes
protons to return to their regular spin; this is achieved using short echo times (TE) and repetition times (TR),
which creates images with high contrast between fat and water-rich tissue. By contrast, T2 images show the
speed at which protons reach equilibrium or become out of phase using longer TE and TR times, thus
producing images with high contrast between different types of fluids such as blood and cerebrospinal fluid,
making it the most appropriate for identifying edema and lesions with high fluid content (Dhabalia et al., 2024).
The advanced technology of MRI enables the characterization of four essential pathophysiological
characteristics that define a brain tumor (Martucci et al., 2023): aggressiveness, cellularity, metabolism, and
vascularization. The preceding, in turn, reassures us about the effectiveness of MRI in monitoring tumor
progression or response to treatment.

Although advances in MRI imaging enable detailed visualization of the body's tissues and organs,
interpretation remains subject to expert diagnosis. In this sense, image segmentation has become one of the
most crucial steps in medical imaging studies and analysis (Hernandez-Gutierrez et al., 2024). Over the last
decade, image segmentation and classification processes have made significant contributions to tumor
diagnosis, enabling this process to be performed automatically and efficiently. However, these types of
algorithms have some drawbacks when processing images, including sensitivity to noise and low robustness.
Consequently, in recent years, the use of Deep Learning (DL) techniques has been incorporated, as evidenced
by improvements in the results obtained compared to classical segmentation methods. In this context, they
are used to estimate the location and size of brain tumors accurately. These algorithms mainly consist of
convolutional networks with a U-shaped structure, known as UNet (Nizamani et al., 2023) (Wan et al., 2023).
These have established themselves as one of the most effective methods in the field of medical image
segmentation due to their structure, which includes an encoder block that extracts the most relevant features
and a decoder block that reconstructs the image to its original size and already segmented (Nizamani et al.,
2023).

Background

Currently, MRI techniques are being incorporated for the detection of brain tumors using artificial intelligence,
deep learning, and Convolutional Neural Networks (CNNs). The aim is to achieve greater accuracy and
reliability in the detection of brain tumors, which represents a significant advance in their diagnosis and
treatment.
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Kumar Sahoo et al. (2023) introduced a new model that segments and classifies images based on tumor type.
It works in two stages. First, using a U-Net network with ResNet-18 on MRI t1-ce without processing, obtaining
a 99.6% accuracy and 90.11% Dice score. In the Second stage, a YOLO2 transfer learning model was used
to classify the segmented models, achieving 97% accuracy.

Additionally, Montaha et al. (2023) propose a model based on a U-Net architecture to segment brain tumors
using 2D slices extracted from 3D images. They used the FLAIR, T1, T1ce, and T2 sequences from the BraTS
2020 dataset. The model used the Adam optimizer and a varied configuration of parameters. Its best
performance was with the T1 sequence, with an accuracy of 99.41% and a DSC of 93.86%.

Two years ago, Wan et al. (2023) presented an advanced model for glioma segmentation on MRI, using Deep
Learning techniques and multimodal data. RegNet is used to codify images, meanwhile DeepLasb3+ is used
as a codifier. The model incorporates a composite loss function that enhances accuracy and reduces noise in
the predictions. They used the LGG dataset and obtained a 94.36% Dice score.

Meanwhile, Muhammad Faheem Khan et al. (2024) introduced the OT model, a computer-aided system
designed for the precise identification of brain gliomas. Significant preprocessing steps, including noise
removal and tumor localization, significantly improved image quality, enabling accurate feature extraction. The
OT model employed the Gray Level Co-occurrence Matrix for texture analysis and integrated a feature
selection scheme to identify the thirty most relevant features, which were evaluated using three machine
learning classifiers. The LSTM classifier achieved a classification accuracy of 83.71%, while the CNN classifier
reached 84.50%.

Specifically, Hernandez-Gutierrez et al. (2024) developed a novel method for tumor segmentation based on
an optimized U-Net, designed to segment the T2 sequence of MRI images automatically. The model includes
a lightweight architecture with SELU activation functions and utilizes the SGD optimizer, trained in over 500
epochs. The BraTS 2017, 2020, and 2021 datasets were used for evaluation, with the best results achieved
on the BraTS 2021 dataset. The outcomes demonstrated that the proposed model provides accurate
segmentation while maintaining low computational requirements, making it ideal for devices with limited
resources.

More recently, R Preetha and M (2025) proposed an advanced approach to brain tumor segmentation using
a U-Net architecture with multiscale attention, integrating the EfficientNetB4 network as an encoder. This
model enhances the extraction of hierarchical and contextual features at multiple scales, allowing for more
accurate segmentation of tumor regions in MRI images. Additionally, spatial and channel attention
mechanisms were incorporated to highlight relevant areas and suppress redundant information. The study
demonstrated significant improvements in metrics such as Dice and loU compared to conventional U-Net
variants. However, it did not evaluate multi-class tasks or validate its results on heterogeneous clinical
datasets.

Dorfner et al. (2025) explore advancements in deep learning for brain tumor analysis using MRI, emphasizing
models such as U-Net, nnU-Net, and ResNet, which enhance tumor segmentation and classification with
greater accuracy than traditional methods. These models also aid in predicting molecular biomarkers and
monitoring treatment responses. While emerging techniques, such as vision transformers, show promise,
challenges persist, including limited public datasets, demographic biases, concerns over generalizability and
interpretability, as well as ethical issues in clinical implementation.

Finally, Revathi et al. (2025) proposed an advanced approach to brain tumor segmentation using a U-Net
architecture with multiscale attention, integrating the EfficientNetB4 network as the encoder. This model
enhances the extraction of hierarchical and contextual features at multiple scales, allowing for more accurate
segmentation of tumor regions in MRI images. Additionally, spatial and channel attention mechanisms were
incorporated to highlight relevant areas and suppress redundant information. The study demonstrated
significant improvements in metrics, including Dice and loU, compared to conventional U-Net variants.
However, it did not evaluate multi-class tasks or validate on heterogeneous clinical datasets. Table 1
summaries a comprehensive list of datasets and methodologies to detect brain tumors, which particularly use
the BraTS datasets in recent literature.
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Table 1. Recent datasets and associated methods for brain tumor detection.

Article Dataset Method Year Limitations

Inaccurate tumor boundary delineation, highly

g%g\é?thl etal., BraTS2020 BeStCNN with Dense U- 2025 inefficient computationally, and challenges in
managing diverse tumor types and sizes.
Currently, only a limited number of brain tumor-
(2%32‘;1& etal, (B;g-l_;_l's TCIA, DL 2025 related models have been approved for clinical use in
U.S.A.
EfficientNetB4 with Lack of standardized comparison of inference time.

(Preetha et al., Limited dataset diversity, absence of multi-class

2025) Figshare multi-scale Attention 2025 evaluation, and limited interpretability, as well as
UNET model L P
clinical validation of the model.
(Hernandez- BraTS2017, . . . . .
Gutierrez etal,  BraTS2020,  Lightweight UNET 2024 E’:rffs&;im:g‘l“rfsoufc'zi and  highly ~ demanding
2024) BraTS2021 P :
Reduced reach of the proposed model and the need
for a better method of detection. The use of Dice
(Muhammad . : .
LGG score as a metric of evaluation does not result in an
Faheem Khan et . CNN 2024 - . .
al., 2024) Segmentation appropriate measure of noise presence. Finally, the

effect of other data modalities on the results obtained
was not sufficiently analyzed.

Noise detection function, as this is limited to binary

(Wan et al., LGG ) DeeplLabv3+ and 2D segmentation. Although DICE is effective for
Segmentation 2023 o L T L f h
2023) Dataset RegNet quantifying similarities, it is not sufficiently informative

in evaluating noise removal.

Not enough number of images. In this regard, other
3D brain MRI datasets can be explored. Deep

BraTS2020 UNET + resnet18 2023 learning architecture can be further optimized with a
hybrid approach that incorporates CNNs or attention
mechanisms.

(Montaha et al.,
2023)

They focus solely on T1-CE images. Furthermore, by
not utilizing the preprocessing stage to minimize

Figshare DL 2023 computational load, limitations arise in terms of
sensitivity, robustness against tumor variability, and
the use of multimodal data.

(Kumar Sahoo et
al., 2023)

Objectives

To adapt and rigorously evaluate a computationally efficient variant of the baseline U-Net architecture,
obtained through targeted structural modifications, that delivers high-precision segmentation of intracranial
tumors on magnetic resonance imaging (MRI) and establishes a solid foundation for its future deployment on
resource-constrained embedded systems.

Specific Aims:

e Undertake an exhaustive critical review of current brain-tumor segmentation methodologies, with
particular emphasis on U-Net and its lightweight derivatives, to distill state-of-the-art techniques for
parameter compression, including depthwise separable convolutions, network pruning, and post-
training quantization.

e Modify the standard U-Net by incorporating efficiency-oriented modules, such as pointwise and
depthwise convolutional blocks, and streamlined residual pathways, with the dual aim of substantially
reducing the parameter count and floating-point operations while preserving the capacity for
contextual feature representation.

o Implement a systematic hyperparameter-tuning strategy that encompasses learning-rate scheduling,
regularization techniques, and optimizer selection to maximize segmentation accuracy, quantified via
the Dice similarity coefficient and Intersection over Union, under stringent computational constraints.
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¢ Quantitatively assess the proposed lightweight model on established benchmark datasets, such as
the BraTS series, using standard metrics (Dice, Intersection over Union, precision, and recall), and
conduct comparative analyses against the unmodified U-Net and other contemporary lightweight
baselines to determine its relative efficacy.

Methodology

Dataset

The BraTS2024 datasets comprise images acquired using multiparametric magnetic resonance imaging
(mpMRI) protocols, including the following MRI sequences: T1-weighted without contrast (T1), T1-weighted
with contrast (T1-Gd), T2-weighted (T2), and T2-weighted with fluid-attenuated inversion recovery (FLAIR).
The data was obtained by seven academic medical centers (see Figure 2), where approximately 2,200
different cases were obtained. This database focuses on post-treatment MRIs of low- and high-grade diffuse
gliomas (Correia de Verdier et al., 2024).

|
HEIDELBERG
UNIVERSITY
HOSPITAL

Figure 2. Medical institutions from USA and Germany that contributed with data to build the 2024 Brain Tumor Segmentation dataset (BraTS2024).

To obtain these images, software was applied to different sequences to convert the image format to the
Neuroimaging Informatics Technology Initiative (NIfTI) file format (Correia de Verdier et al., 2024).

Function Loss

When segmenting medical images, we encounter various challenges related to the dataset, such as
imbalance, as well as the complexity involved in segmenting a small portion of the image compared to its
overall background (Yeung et al., 2022). This phenomenon, known as class imbalance, can impact the model's
learning process, leading to bias and suboptimal segmentation performance. In semantic segmentation,
particularly in binary segmentation, we find two main loss functions that are commonly used for this purpose.
The first function is Binary Cross-Entropy (BCE), which measures the discrepancy between the ground truth
and the model prediction in terms of the number of pixels. BCE is primarily used when the data is balanced,
as it evaluates pixels independently without considering the relative proportions of foreground and background
regions (Ma et al., 2024). The BCE function is defined as

N
1
Loce = = > [y log@) + (1 - ) log(1 = 5)] (1)

i=1

Where N represents the number of samples, y; represents the true label of the pixel, and ¥, is the predicted
probability that pixel belongs to the positive class.
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Similarly, the DicelLoss function is used in image segmentation to evaluate class-imbalanced datasets

(Hernandez-Gutierrez et al., 2025). It is a function described as
Zlivzl)’iﬁ

2?1:1 Vi + 2?:15’\1

Where N is the total number of pixels in the image, y; represents the ground truth label and 3, corresponds
to the predicted probability for each pixel.

Lpice=1-2 @

Overall framework

In this study, a 70:15:15 split was chosen for training, validation, and testing (see Figure 3Figure 1). This
percentage enables the model to learn tumor characteristics in a representative manner from MRI. It also
focused on T2-Weighted images with fluid-attenuated inversion recovery (FLAIR), as these allow for better
visualization of the tumor compared to the T1 sequence, while significantly reducing noise, unlike the T2
sequence. These differences can be better visualized in Figure 4Figure 4.

[ Best slice selection ]
Pre-processing } —————— Ground truth

[ | [ Normalization ]
raming: o
[

Data split
Validation: 30%

l

Proposed U-Net model }

!

[ Best resulting model ]

Figure 3. Framework of the proposed tumor segmentation.

(a) (b)

Figure 4. Contrast difference between the Resonance Magnetic Images (MRI). (a) T1C, (b) T2W, and (c) T2F sequences.

Preprocessing

For image preprocessing, the image was cropped into portions, and the one containing the highest percentage
of the tumor was selected. Subsequently, the images were converted to grayscale. From among them, the
one showing the most significant part of the tumor was selected to obtain a better visualization of
segmentation. The resulting dataset was normalized and then resized to 240 x 240 pixels. Finally, a
percentage of the dataset was assigned for training and another percentage for validation. This was done to
optimize machine learning and improve the quality of the results.
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Proposed model

The proposed model is based on a modified U-Net structure. It is a Lightweight U-Net architecture used in
medical image segmentation tasks, as it helps reduce computational costs. It is a structure that has an
encoder-decoder network. The encoder part oversees the extraction of relevant features using two layers of
convolutions and max pooling operations, while the decoder part reconstructs the segmented mask using
transposed convolutions. In addition, the connections between the layers allow for preserving spatial and edge
information during the reconstruction process. For each layer, the SeLU activation function was used, along
with batch normalization, which helped stabilize the training.

Input image o, Predicted image
g
Y
- Skip connection B H
4 >
<4 . . <
@ Skip connection Y
1
5
Skip connection ‘%
3
o LS
L—’ R
- Convolution Layer
-Batch Normalization

Dropout Layer

-Max Pooling

-Transposed Convolution

Latent space

Figure 5. Modified UNET network architecture.

Results

This section details the segmentation results, and the evaluation metrics employed to assess the
Lightweight U-Net on the BraTS 2024 dataset. The sequences evaluated were T1C, T2W, and T2-FLAIR
(T2F). Each of them was set to 1000 epochs. The Binary Cross-Entropy Loss (BCE Loss) function was applied
to all three sequences, and in the case of T2F, BCE-Dice Loss was also used to compare the effects on
segmentation. A learning rate of 0.0001 was set. The results (prediction) were compared with the
corresponding ground truth.

Evaluations Metrics

In this study, model performance is assessed with four key metrics: Dice Similarity Coefficient (DSC),
Intersection over Union (loU), precision, and sensitivity.

Dice Similarity Coefficient (DSC)

The Dice Similarity Coefficient (DSC) indicates the degree of overlap between the actual mask and the model's
prediction. For this metric, the closer to 1, the more accurate the segmentation will be (Zanddizari et al., 2021).
DSC is described by

psc =2y4%8 3)

AUB’

Where A is a segmented imagen, and B represent the ground truth.
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Intersection Over Union (loU)
Like DSC, but more accurate. Intersection Over Union (loU) evaluates the level of overlap between the ground
truth and the model's prediction (Mohammed et al., 2024). loU is mathematically defined by

Mean IoU = Z% (€))

Here A represents the ground-truth imagen, while B represents the predicted segmentation A N B represent
the overlap between two images

Precision

Precision indicates the model’s accuracy in avoiding false positives; the higher the value obtained, the better
(Peng et al., 2024).

ITP|
|TP|+ |FP|’

Precision =

©)

TP represents the true positives, while FP represents the false positives.

Sensitivity (Recall)

Sensitivity (the recall score or true positive rate) corresponds to the model’s ability to obtain the most significant
amount of the tumor from the ground truth. The higher the sensitivity, the fewer omissions of true positives
(Zhuang et al., 2021). Sensitivity is computed by

Sensitivity = Z? 6)

Segmentation Results

Figure 6 provides a qualitative comparison of the three MRI modalities. The left column contains the original
slice, the center column shows the ground-truth mask, and the right column displays the model’s prediction.
The T2F sequence yields the most accurate delineation, as its lower cerebrospinal fluid (CSF) signal
suppresses noise and enhances the contrast between the tumor and surrounding parenchyma, leading to a
near-perfect overlap with the reference mask. The model’'s output for the T2W sequence is reasonably close
to the ground truth, but residual intensity similarities between tumor and adjacent tissue cause mild
over-segmentation. By contrast, the network fails to identify the lesion in the T1C sequence, resulting in an
empty mask with no voxels labeled as a tumor.
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T1C

Original Image Ground Truth Prediction
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)

T2W

Original Image Ground Truth Prediction

T2F

Original Image Ground Truth Prediction

Figure 6. Brain tumor segmentation results using the BraTS 2024 dataset

T2F with BCEDiceLoss

Original Image Ground Truth Prediction

Figure 7. Brain tumor segmentation results using the BraTS 2024 dataset and BCEDiceLoss function.

Evaluation metrics were computed separately for the three MRI modalities: T1C, T2W, and T2-FLAIR. For the
contrast-enhanced T1 sequence (T1C), the model achieved a Dice similarity coefficient of 0.468, an loU of
0.318, an accuracy of 0.849, and a sensitivity of 0.340. Although the accuracy appears high, the low Dice and
loU scores indicate minimal spatial overlap between the predicted mask and the ground truth. Visual
inspection confirms that the network produced an essentially empty segmentation, suggesting that the T1C
sequence does not provide sufficient tumor—background contrast for reliable delineation.

The T2W modality achieved the strongest quantitative performance across all sequences. It recorded a Dice
similarity coefficient of 0.760 and an loU of 0.623, indicating substantial spatial agreement between the
predicted and ground-truth masks. Sensitivity was likewise highest, confirming that the network detected most
tumor voxels. By contrast, overall accuracy was lower at 0.711, a decline likely attributable to the elevated
cerebrospinal fluid (CSF) signal in T2W images, which introduces considerable visual noise and affects
background classification.
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The T2-FLAIR modality also demonstrated strong performance. When the model was trained with binary
cross-entropy (BCE) loss, it achieved a Dice similarity coefficient of 0.707 and an loU of 0.575. Replacing BCE
with the combined BCE-Dice loss further raised the Dice score to 0.718, while the loU remained comparable
at 0.570. The combined loss function also produced higher overall accuracy, suggesting better identification
of tumor voxels. Qualitative inspection in Figure 7, however, shows that the mask generated with BCE-Dice
loss is more fragmented, whereas the mask obtained with BCE loss appears almost fully contiguous with the
ground truth.

Table 2. summarizes the data obtained for each of the sequences evaluated using the model.

Table 2. Metrics obtained for each MRI sequence in the tumor detection process.

Sequence Loss function Dice loU Precision Sensitivity (Recall)
T1C 0.468 0.318 0.849 0.340
T2W BCELoss 0.760 0.623 0.711 0.842
0.707 0.575 0.899 0.618
T2F
BCEDicelLoss 0.718 0.570 0.903 0.609
Conclusions

This study presents a lightweight U-Net variant with optimized convolutional blocks for fully automated brain
tumor segmentation. The most favorable results were obtained for the T2-weighted sequence trained with
Binary Cross-Entropy (BCE) loss, yielding Dice = 0.760, loU = 0.602, accuracy = 0.711, and sensitivity = 0.842.
For the T2-FLAIR sequence, BCE produced Dice=0.707, loU=0.575, precision=0.899, and
sensitivity = 0.618, whereas the combined BCE-Dice loss marginally increased Dice (0.718) and precision
(0.903) but reduced sensitivity to 0.609.

These results indicate that the T2-weighted sequence with BCE maximizes sensitivity, while the T2-FLAIR
sequence with BCE—Dice achieves the most balanced overall performance. The proposed architecture,
therefore, delivers competitive segmentation accuracy with minimal computational overhead.
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