

GENERACIÓN DE UNA CONSTRUCCIÓN PARA LA COMPLEMENTACIÓN DE MUTANTES DEFICIENTES EN EL GEN DISA DE BACILLUS SUBTILIS

Alba Pérez, Vianey (1), Valenzuela García, Luz Idalia (2), Pedraza Reyes, Mario (2).

1 [Lic. Químico Farmacéutico Biólogo, Universidad de Guanajuato] | v.albaperez@ugto.mx

2 [Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato] | pedrama@ugto.mx

Resumen

La integridad del DNA es importante para el óptimo desarrollo de los organismos, por lo que estos cuentan con proteínas que reparan el daño que sufre su material genético, los cuales pueden ser controlados por proteínas que disparan respuestas celulares a estrés, denominadas "checkpoints". La proteína DisA verifica el estado de daño del cromosoma de las esporas de *B. subtilis* durante su retorno al crecimiento vegetativo. DisA detiene la replicación hasta que las lesiones genéticas, presumiblemente promovidas por estrés oxidativo, son eliminadas. Con la finalidad de estudiar la relación de DisA con los sistemas de reparación involucrados en este evento, se obtuvo una construcción génica para expresar al gen *disA* desde un promotor inducible por el análogo de la lactosa IPTG. Para tal fin, se utilizó el plásmido integrativo pDR111 y como huéspedes cepas de *E.coli* con distintos fondos genéticos.

Abstract

DNA integrity is essential for the optimal development of all living forms; therefore, organisms count with DNA repair systems whose activity can be under control of checkpoint proteins. The checkpoint protein DisA verifies the damage state of the spore's chromosomes during its return to vegetative growth. This protein halts replication until all DNA damage, presumably inflicted by oxidative stress, is eliminated. To investigate the interconnection between DisA with the repair pathways involved in this checkpoint event, a construct to express *disA* from an IPTG-inducible promoter was generated in the integrative plasmid pDR111 using as hosts *E. coli* strains with distinct genetic backgrounds.

Bacillus subtilis; disA; checkpoint; esporas; daño al DNA.

INTRODUCCIÓN

Todas las células deben copiar con precisión y mantener la estabilidad de su material genético para garantizar la transmisión fiel a sus descendientes. Todas las formas vivientes desde las bacterias hasta los humanos poseen distintos mecanismos dedicados al reconocimiento y la reparación de lesiones infringidas por factores intra- y extra-celulares a su genoma.

La luz UV, altas temperaturas, la desecación, productos químicos oxidantes y fármacos genotóxicos tienen la capacidad de ocasionar lesiones a la estructura del DNA y sus precursores provocando mutaciones [1-3].

Bacillus subtilis, el microorganismo Gram-positivo mejor caracterizado, bajo situaciones de estrés nutricional puede experimentar un proceso de diferenciación que culmina en la formación de un tipo de célula en estado latente llamado espora [4-6]. Debido a su capacidad de sobrevivir durante largos períodos de inactividad metabólica, las esporas de *B. subtilis* representan un excelente modelo para estudiar las consecuencias de la larga exposición a los factores ambientales que dañan el DNA [1-3]. La estructura de las esporas permite su supervivencia bajo condiciones ambientales extremas. Cuando las condiciones son apropiadas, las esporas germinan para regresar al crecimiento vegetativo [7].

La presencia de lesiones en el genoma de las esporas puede afectar procesos vitales como la transcripción y la replicación durante la germinación/eclosión [9]. Por carecer de un metabolismo activo, las esporas del género *Bacillus* eliminan el daño acumulado en su genoma durante la germinación/eclosión mediante distintos sistemas de reparación [2,3,8].

Se ha reportado que la presencia de lesiones en el cromosoma de las esporas de *B. subtilis* activan un evento de "checkpoint" dependiente de la proteína DisA. Se conoce que esta proteína retrasa la replicación hasta que el daño genético ha sido eliminado, para proceder con el proceso de eclosión [10].

Trabajo previo enfocado en demostrar la relación de DisA con sistemas de reparación de DNA mostró que la falta de *uvrA* del sistema NER y *disA*, retardan el regreso de las esporas al crecimiento vegetativo. Para adicionar evidencia que sustente la participación de DisA en controlar los eventos de reparación que ocurren durante la germinación/eclosión de las esporas de *B. subtilis*, en el presente trabajo se generó una construcción que permite expresar a *disA* desde un promotor inducible por IPTG.

MATERIALES Y MÉTODOS

Cepas bacterianas, plásmidos y condiciones de crecimiento

En las tablas 1 y 2 se muestran las cepas y los plásmidos que se emplearon en este estudio. El crecimiento de las cepas se realizó en Medio Luria-Bertani (LB). Cuando se requirió, el medio fue suplementado con los siguientes antibióticos: Ampicilina (Amp) 100 μ g/mL, Kanamicina (Kn) 50 μ g/mL, Tetraciclina (Tc) 100 μ g/mL, Eritromicina (Eri) 5 μ g/mL y Espectinomicina (Sp) 100 μ g/mL.

La preparación de células competentes de *E coli* y *B. subtillis* y su transformación con DNA se efectuó de acuerdo a los métodos descritos por Sambrook y col. (1989) y Boylan y col. (1972), respectivamente [11,12]. La obtención de DNA plasmídico a pequeña escala, la manipulación enzimática y el análisis electroforético de DNA en geles de agarosa se llevó a cabo utilizando técnicas estándar [11].

	j plasiniaos anizadas en esta estado		
CEPA	GENOTIPO O FENOTIPO	REFERENCIA	
B. subtilis			
168	Silvestre (Trp ⁻)	Cepario PERMLab	
PERM733	<i>B. subtilis</i> deficiente en <i>disA</i>	Cepario PERMLab	
E. coli			
PERM100	<i>E.coli</i> DH5α	Cepario PERMLab	

Tabla 1: Cepas y plásmidos utilizadas en este estudio

Vol. 2 no. 1, Verano de la Investigación Científica, 2016

PERM118	E.coli SURE	Cepario PERMLab
PERM318	Mantiene los plásmidos en un bajo número de copias.	New England BioLabs
PERM1532	<i>E.coli</i> DH5α conteniendo el plásmido pPERM1532; Amp ^{R.}	Este estudio
PERM1534	<i>E.coli</i> Sure conteniendo el plásmido pPERM1534; Amp ^R .	Este estudio
PERM1535	<i>E.coli</i> PERM318 conteniendo el plásmido pPERM1535; Amp ^R .	Este estudio

Tabla 2: Plásmidos empleados en este estudio

PLÁSMIDO	DESCRIPCIÓN	REFERENCIA
pJET 1.2	Vector de clonación; Amp ^R	Thermo Scientific
pDR111	Vector de expresión integrativo para <i>B.subtilis</i>	Donado por David Rudner
pPERM1532	pJET 1.2 + <i>disA</i> , Amp ^R	Este estudio
pPERM1534	pDR111 + <i>disA,</i> Amp ^R	Este estudio
pPERM1535	pDR111 + <i>disA,</i> Amp ^R	Este estudio

Caracterización molecular de las cepas transformantes

Las construcciones génicas verificaron se mediante análisis de restricción de minipreparaciones de DNA en geles de agarosa al 1% teñidos con bromuro de etidio, para constatar la liberación del fragmento disA (1200 pb) de los vectores (pJet1.2 y pDR11) utilizando las enzimas Bg/II, Nhel y Sall. La inserción de disA en el vector pDR111 también fue corroborada mediante utilizando amplificación por PCR los oligonucleótidos 757 y 758 (Tabla 3), empleando Tag DNA polimerasa (New Englad Biolabs).

Tabla 3: Oligonucleótidos utilizados en este estudio

OLIGONUCLEÓTIDO	SECUENCIA 5`- 3`	DESCRIPCIÓN
757	GCAG <u>GTCGA</u> <u>C</u> ATGGAAAAA GAGAAAAAA	Oligonucleótido directo ubicado a partir del primer codón del marco de lectura abierto de <i>disA</i> con sitio de

	GG	corte para Sall (subrayado)
758	GCAG <u>GCTAG</u> <u>C</u> GTACAAACA ATTCAGGTAT CA	Oligonucleótido reverso ubicado a 150 pb rio abajo del codón de terminación del marco de lectura abierto <i>disA</i> , posee sitio de corte para <i>Nhe</i> l (subrayado)

RESULTADOS Y DISCUSIÓN

Replicación in vitro, clonación del gen *disA* de *B. subtilis*

Mediante PCR, se amplificó el marco de lectura abierto del gen disA a partir del DNA cromosómico de B. subtilis 168. Para ello, se utilizaron los oligonucleótidos 757 y 758 (Tabla 3) y Vent® DNA polimerasa, empleando gradiente un de temperatura en la etapa de alineamiento. Los productos obtenidos de estas reacciones se analizaron en un gel de agarosa al 1%. Los resultados en la Figura 1 muestran la amplificación de un producto mayoritario con el tamaño esperado (~1200 pb) en todas las temperaturas de alineamiento utilizadas.

Figura 1. Análisis electroforético en un gel de agarosa al 1% del producto de PCR (gen *disA* **de** *B.subtilis***). Carriles 1, 2, 3, 4 y 5, temperaturas de alineamiento de 50, 55, 60, 65 y 70 °C respectivamente.**

Generación de una construcción para la sobreexpresión del gen *disA*

El gen *disA*, amplificado por PCR, fue purificado en un gel de agarosa de bajo punto de fusión. Éste se ligó en el vector de clonación pJET1.2 y la construcción resultante (pPERM1532) (Fig. 2) se replicó en *E. coli* DH5 α . La construcción se verificó mediante análisis de restricción de

minipreparaciones de DNA. Para tal fin los plasmidos aislados de varias colonias transformantes se sujetaron a restricción con la enzima *Bgl*II y los productos se analizaron en un gel de agarosa al 1%. Los resultados mostraron que dos de cuatro plásmidos contenían un fragmento del tamaño esperado; i.e., 1200 pb, en el vector pJET1.2 (Fig. 3). La construcción resultante se denominó pPERM1532 (Tabla 2).

Figura 2. Mapa de la construcción pJET-disA (pPERM1532).

Figura 3. Análisis de restricción para corroborar la identidad de la construcción PERM1532 en un gel de agarosa al 1%. DNA plasmídico de las clonas 1, 2, 3 y 4 cortado con la enzima *Bgl*II. Patrón de restricción en clonas positivas 3 y 4 (3000 pb del vector, 1200 pb del gen *disA*)

Tras verificar la identidad del plásmido pPERM1532, el fragmento del gen disA se liberó con las enzimas Sall y Nhel y se ligó en el vector de expresión pDR111 previamente digerido con las mismas enzimas. Los productos de la reacción de ligación se utilizaron para transformar células competentes de la cepa E. coli PERM318 (Tabla 1). Se seleccionaron colonias transformantes capaces de crecer en medio suplementado con ampicilina. Para corroborar la presencia de la construcción pDR111-disA (Fig.4), se tomaron muestras celulares, se lisaron por calor y se utilizaron como templado en reacciones de PCR para amplificar por PCR el ORF de disA utilizando los oligonucleótidos 757 y 758 descritos en la Tabla 3. Los resultados de la Figura 5 demuestran que una colonia analizada contiene la construcción de interés, a la cual se le denominó pPERM1535.

Figura 4. Mapa de la construcción pDR111-*disA* (pPERM1534 y pPERM1535).

Figura 5. Verificación de la construcción PERM1535 (pDR111*disA*) mediante análisis por PCR en un gel de agarosa al 1%. Carril 1, control positivo, carril 2, clona 1 de la construcción PERM1535.

Adicionalmente se obtuvo la construcción pDR111disA en la cepa *E. coli* SURE clonando el producto de PCR de los oligonucleótidos 757 y 758 digerido con las enzimas *Sal*l y *Nhe*l en el vector pDR111. La construcción fue corroborada por análisis de restricción empleando las enzimas *Sal*l y *Nhe*l en un gel de agarosa al 1%, observándose la liberación de un fragmento de 1200 pares de bases correspondiente al ORF del gen *disA* en una clona probada, carril 4 Figura 6. La construcción obtenida en este fondo genético se denominó pPERM1534.

Figura 6. Análisis de restricción del plásmido pPERM1534 en gel de agarosa al 1%. Carril 1, plásmido pDR111 vacío sin cortar; carril

2 plásmido pDR111 vacío cortado, carril 3, pPERM1534 sin cortar, carril 4 restricción de pPERM1534 cortado con las enzimas *Sall*/*Nhe*I (*disA* 1200pb y pDR111 -7800 pb).

Transformación de una mutante de *B.* subtilis deficiente en DisA

Se utilizó la construcción pDR111-*disA* para transformar células competentes de la cepa PERM 733, una mutante carente del gen *disA*. Mediante un evento de recombinación homóloga se obtuvieron colonias transformantes resistentes a Sp, en las cuales presumiblemente se integró la construcción de interés en el locus *amyE*, de *Bacillus* subtilis (Fig.7).

Figura 7. Interrupción del gen *amyE* en *Bacillus subtilis*.

CONCLUSIONES

Se generó una construcción integrativa para expresar el gen *disA* desde un promotor inducible por IPTG en fondos genéticos de *B. subtilis* carentes de DisA y diferentes sistemas de reparación de DNA.

AGRADECIMIENTOS

Trabajo financiado por CONACYT (Grants 205744 and 221231) y la Universidad de Guanajuato (Grants 602-2015, 936-2016 and 1090-2016). Vianney Alba agradece la beca otorgada por la DAIP para la realización de su estancia de investigación.

REFERENCIAS

1. Nicholson WL, Munakata N, Horneck G, Melosh HJ, Setlow P. 2000. Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiol. Mol. Biol. Rev. 64:548–572.

2. Setlow P. 2006. Spores of Bacillus subtilis: their resistance to and killing by radiation, heat and chemicals. J. Appl. Microbiol. 101:514–525.

3. Pedraza-Reyes M, Ramírez-Ramírez N, Vidales-Rodríguez LE, Robleto EA. 2012. Mechanisms of bacterial spores survival, p 73–84. In Abel-Santos E (ed), Bacterial spores: current research and applications. Caister Academic Press, Norfolk, United Kingdom.

4. Piggot, P.J., and Losick, R. (2001). Sporulation genes and intercompartmental regulation. In *Bacillus subtilis* and its closest relatives: from genes to cells, A.L. Sonenshein, J.A. Hoch, and R. Losick, eds. (Washington: ASM Press), pp. 483–517.

5. Errington, J. (2003). Regulation of endospore formation in *Bacillus subtilis*. Nat. Rev. Microbiol. 1, 117–126.

6. Piggot, P.J., and Hilbert, D.W. (2004). Sporulation of *Bacillus subtilis*. Curr. Opin. Microbiol. 7, 579–586.

7. Setlow, P. (2000). Resistance of bacterial spores. In Bacterial Stress Responses, Storz, G., and Hengge-Aroins, R., eds. (American Society for Microbiology, Washington D.C.), pp. 217-230.

8. Setlow, P. (2003). Spore germination. Current opinion in microbiology, 6(6), pp.550-556.

9. Ibarra, J. R., Orozco, A. D., Rojas, J. A., López, K., Setlow, P., Yasbin, R. E., & Pedraza-Reyes, M. (2008). Role of the Nfo and ExoA apurinic/apyrimidinic endonucleases in repair of DNA damage during outgrowth of *Bacillus subtilis* spores. Journal of bacteriology, 190(6), pp.2031-2038.

10. Campos, S. S., Ibarra-Rodriguez, J. R., Barajas-Ornelas, R. C., Ramírez-Guadiana, F. H., Obregón-Herrera, A., Setlow, P., & Pedraza-Reyes, M. (2014). Interaction of apurinic/apyrimidinic endonucleases Nfo and ExoA with the DNA integrity scanning protein DisA in the processing of oxidative DNA damage during *Bacillus subtilis* spore outgrowth. Journal of bacteriology, 196(3), pp.568-578. 11. Sambrook, J., Fritsch, E. F. y Maniattis, T. (1989). Molecular cloning: A laboratory manual 2ed. Cold Spring Harbor Laboratory Press. USA

12. Boylan, R.J., N.H. Mendelson, D. Brooks & F.E. Young, (1972) Regulation of the bacterial cell wall: analysis of a mutant of *Bacillus subtilis* defective in biosynthesis of teichoic acid. J Bacteriol 110: 281-290.